首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The virulence of Staphylococcus aureus is controlled by the accessory gene regulator (agr) system, including an extracellular inducer encoded by agrD. Variable agr PCR restriction fragment length polymorphism (RFLP) patterns of unique S. aureus strains (n = 192) were determined for a region comprising agrD and parts of the neighboring agrC and agrB genes. Twelve unique RFLP patterns were identified among S. aureus strains in general; these patterns were further specified by sequencing. All sequences could be catalogued in the three current agr groups. A major proportion of the S. aureus strains belong to agr group 1, whereas only 6% of the methicillin-susceptible S. aureus strains and 5% of the methicillin-resistant S. aureus strains belong to agr groups 2 and 3, respectively. The homology between groups varied from 75 to 80%, and within groups it varied from 96 to 100%. Different levels of sequence variability were observed in the different agr genes. agr-related bacterial interference among colonizing S. aureus strains in the noses of persistent and intermittent human carriers was studied. S. aureus strains belonging to different agr groups were encountered in the same individual. This may suggest that the activity of the agrD gene product does not define colonization dynamics, which is further substantiated by the rarity of agr group 2 and 3 strains.  相似文献   

3.
M Otto  R Süssmuth  C Vuong  G Jung  F G?tz 《FEBS letters》1999,450(3):257-262
The agr quorum-sensing system in Staphylococci controls the production of surface proteins and exoproteins. In the pathogenic species Staphylococcus aureus, these proteins include many virulence factors. The extracellular signal of the quorum-sensing system is a thiolactone-containing peptide pheromone, whose sequence varies among the different staphylococcal strains. We demonstrate that a synthetic Staphylococcus epidermidis pheromone is a competent inhibitor of the Staphylococcus aureus agr system. Derivatives of the pheromone, in which the N-terminus or the cyclic bond structure was changed, were synthesized and their biological activity was determined. The presence of a correct N-terminus and a thiolactone were absolute prerequisites for an agr-activating effect in S. epidermidis, whereas inhibition of the S. aureus agr system was less dependent on the original structure. Our results show that effective quorum-sensing blockers that suppress the expression of virulence factors in S. aureus can be designed based on the S. epidermidis pheromone.  相似文献   

4.
Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N‐acyl‐homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall‐degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM‐QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL‐QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM‐ and AHL‐QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.  相似文献   

5.
Many of the genes encoding the virulence factors for Staphylococcus aureus are controlled by the accessory gene regulator (agr) and staphylococcal accessory regulator (sar). This regulation may be affected by the environment in which the organisms are grown. In the majority of ecosystems, bacteria grow attached to surfaces and form biofilms. We used S. aureus strains containing mutations inactivating agr and sar to determine whether the presence of these genes influences the attachment of the bacterium to a surface. We also used strains harbouring reporter constructs of the agr and sar operons to determine their expression in biofilms. The attachment study results showed that the sarA mutant strain adhered better to glass than did the agrA mutant or the wild type. There was an increased adherence to fibronectin-coated glass for all three strains compared to glass. Thus, these adhesion studies demonstrate that agr and sar have pleiotrophic effects on the surface expression of molecules responsible for binding to different substrata. In the biofilms higher numbers of bacteria and the greatest expression were observed at the base, but there were no observable differences between the reporter constructs. Expression of the agr and sar reporter fusions was significantly higher in the deepest layers of the biofilms where the greatest numbers of bacteria were also observed, perhaps as one might expect for genes that are regulated in a cell density dependent fashion.  相似文献   

6.
7.
The genus Burkholderia not only contains the primary pathogens Burkholderia pseudomallei and Burkholderia mallei but also several species that have emerged as opportunistic pathogens in persons suffering from cystic fibrosis or chronic granulomatous disease and immunocompromised individuals. Burkholderia species utilize quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express virulence factors and other functions in a population-density-dependent manner. Most Burkholderia species employ the CepIR QS system, which relies on N-octanoyl-homoserine lactone. However, some strains harbour multiple QS systems and produce numerous AHLs. QS systems have been demonstrated to be essential for full virulence in various infection models and, thus, these regulatory systems represent attractive targets for the development of novel therapeutics.  相似文献   

8.
Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium. Pigment production was only observed in broth under highly aerated conditions. Quorum sensing inhibitors (QSIs) are compounds that specifically block QS systems without affecting bacterial growth and 2 such compounds, sulphur-containing AHL-analogues, reduced production of protease in a typical strain of Aeromonas salmonicida. The most efficient compound N-(heptylsulfanylacetyl)-L-homoserine lactone (HepS-AHL), reduced protease production by a factor of 10. Five extracellular proteases were detected on gelatin-containing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 3 of these were completely down regulated by HepS-AHL. Hence, QSIs can curb virulence in some strains and could potentially be pursued as bacterial disease control measures in aquaculture.  相似文献   

9.
The accessory gene regulator (agr) locus influences the expression of many virulence genes in the human pathogen Staphylococcus aureus. Four allelic groups of agr, which generally inhibit the regulatory activity of each other, have been identified within the species. Interference in virulence gene expression caused by different agr groups has been suggested to be a mechanism for isolating bacterial populations and a fundamental basis for subdividing the species. To test the hypothesis that the species is phylogenetically structured according to agr groups, we mapped agr groups onto a clone phylogeny inferred from partial sequences of 14 genes from 27 genetically diverse strains. Shimodaira-Hasegawa and parametric bootstrap tests rejected the hypotheses that the species is subdivided into three or five monophyletic agr groups but failed to reject the hypothesis that the species is subdivided into two groups that each consist of multiple clonal complexes and multiple agr groups. Additional evidence for agr recombination is found from clustered polymorphisms in complete agr sequences. However, agr recombination has not occurred frequently or randomly through time, because the topology and branch lengths of the clone phylogeny are reflected within each agr group. To account for these observations, we propose a new evolutionary model that involves a genetically polymorphic ancestral population of S. aureus that horizontally transferred agr groups between two subspecies groups near the time that these subspecies groups diverged.  相似文献   

10.
Bacteria are able “to sense” an increase in the cell population density and to respond to it by the induction of special sets of genes. This type of regulation, called Quorum Sensing (QS), includes the production and excretion of low-molecular-weight signaling molecules (autoinducers, AI), which diffuse readily through the cell wall, from cells into the medium. As the bacterial population reaches the critical level of density, the concentration of these signaling molecules in the medium increases as a function of population density. On reaching the critical threshold concentration, AIs bind to specific receptor regulatory proteins, which induce the expression of target genes. By means of AIs, bacteria accomplish the communication that is the transmission of information between bacteria belonging to the same or different species, genera, and even families: the signaling molecules of some bacteria affect the receptors of others causing a coordinated reply of cells of the bacterial population. Bacteria of different taxonomic groups use the QS systems in regulation of a broad range of physiological activities. These processes include virulence, symbiosis, conjugation, biofilm formation, bioluminescence, synthesis of enzymes, antibiotic substances, etc. Here we review different QS systems of bacteria, the role of QS in bacterial communication, and some applied aspects of QS regulation application.  相似文献   

11.
12.
13.
14.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   

15.
金黄色葡萄球菌的微生物病原特性非常复杂并且不断地产生抗生素抗性,目前迫切需要增加对金黄色葡萄球菌的了解。它所引起的疾病与大量毒力因子相关,这些毒力因子的表达是受多个基因调控,其中agr(accessory gene regulator,附属基因调节)是最主要的一个。由于agr系统与人类的多种疾病有关,研究的较为深入,现已成为一个理解群体感应激活和抑制机制的模型系统。agr系统以及其它菌的群体感应系统已经引起了越来越多研究者的注意,本文对agr系统的研究现状、研究过程中发现的问题及其潜在应用价值作了深入地探讨。  相似文献   

16.
Zhang Y  Hu Y  Yang B  Ma F  Lu P  Li L  Wan C  Rayner S  Chen S 《PloS one》2010,5(10):e13527

Background

Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions.

Methodology/Principal Findings

We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species.

Conclusions/Significance

Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals.  相似文献   

17.
18.
19.
Staphylococcus aureus undergoes a density-dependent conversion in phenotype from tissue-adhering to tissue-damaging and phagocyte-evading that is mediated in part by the quorum-sensing operon, agr, and its effector, RNAIII. Contributions of host factors to this mechanism for regulating virulence have not been studied. We hypothesized that fibrinogen, as a component of the inflammatory response, could create spatially constrained microenvironments around bacteria that increase density independently of bacterial numbers and thus potentiate quorum-sensing-dependent virulence gene expression. Here we show that transient fibrinogen depletion significantly reduces the bacterial burden and the consequential morbidity and mortality during experimental infection with wild-type S. aureus, but not with bacteria that lack expression of the quorum-sensing operon, agr. In addition, it inhibits in vivo activation of the promoter for the agr effector, RNAIII, and downstream targets of RNAIII, including alpha hemolysin and capsule production. Moreover, both in vitro and in vivo, the mechanism for promoting this phenotypic switch in virulence involves clumping of the bacteria, demonstrating that S. aureus responds to fibrinogen-mediated bacterial clumping by enhancing density-dependent virulence gene expression. These data demonstrate that down-modulation of specific inflammatory components of the host that augment bacterial quorum sensing can be a strategy for enhancing host defense against infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号