首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology‐dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock‐out mutants in RAD51B, one of the Rad51 paralogs of Athaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B‐dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double‐stranded breaks (measured as γ‐H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S‐phase, and is ATM‐independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non‐transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double‐stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single‐stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.  相似文献   

2.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

3.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

4.
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.  相似文献   

5.
Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor‐1 (CAF‐1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis‐dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA‐damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF‐1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy‐numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild‐type (WT) plants without mutation history (Col‐0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col‐0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF‐1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.  相似文献   

6.
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non‐homologous end‐joining (NHEJ). RAD51‐mediated strand‐invasion and subsequent strand‐exchange is central to the two‐end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector‐derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51‐dependent suggesting the existence of a pathway mechanistically similar to two‐end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one‐sided integration of two independent donor fragments occurred simultaneously leading to a double‐strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.  相似文献   

7.
8.
9.
10.
RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA-damage site.  相似文献   

11.
Breast cancer is the most prevalent cancer type in women. Accumulating evidence indicates that the fidelity of double-strand break repair in response to DNA damage is an important step in mammary neoplasias. The RAD51 and BRCA1 proteins are involved in the repair of double-strand DNA breaks by homologous recombination. In this study, we evaluated loss of heterozygosity (LOH) in the RAD51 and BRCA1 regions, and their association with breast cancer. The polymorphic markers D15S118, D15S214 and D15S1006 were the focus for RAD51, and D17S855 and D17S1323 for BRCA1. Genomic deletion detected by allelic loss varied according to the regions tested, and ranged from 29 to 46% of informative cases for the RAD51 region and from 38 to 42% of informative cases for the BRCA1 region. 25% of breast cancer cases displayed LOH for at least one studied marker in the RAD51 region exclusively. On the other hand, 31% of breast cancer cases manifested LOH for at least one microsatellite marker concomitantly in the RAD51 and BRCA1 regions. LOH in the RAD51 region, similarly as in the BRCA1 region, appeared to correlate with steroid receptor status. The obtained results indicate that alteration in the RAD51 region may contribute to the disturbances of DNA repair involving RAD51 and BRCA1 and thus enhance the risk of breast cancer development.  相似文献   

12.
Homologous recombination requires nucleolytic degradation (resection) of DNA double‐strand break (DSB) ends. In Saccharomyces cerevisiae, the MRX complex and Sae2 are involved in the onset of DSB resection, whereas extensive resection requires Exo1 and the concerted action of Dna2 and Sgs1. Here, we show that the checkpoint protein Rad9 limits the action of Sgs1/Dna2 in DSB resection by inhibiting Sgs1 binding/persistence at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1‐ss mutant variant or by deletion of RAD9, the requirement for Sae2 and functional MRX in DSB resection is reduced. These results provide new insights into how early and long‐range resection is coordinated.  相似文献   

13.
Studies on Chenopodium chromosomes are scarce and restricted mainly to chromosome number estimation. To extend our knowledge on karyotype structure of the genus, the organization of 5S and 35S rRNA genes in Chenopodium chromosomes was studied. The rDNA sites were predominantly located at chromosomal termini, except in a few species where 5S rDNA sites were interstitial. The majority of the diploid species possessed one pair each of 35S and 5S rDNA sites located on separate chromosomes. Slightly higher diversity in rDNA site number was observed in polyploid accessions. One or two pairs of 35S rDNA sites were observed in tetraploids and hexaploids. Tetraploid species had two, four or six sites and hexaploid species had six or eight sites of 5S rDNA, respectively. These data indicate that, in the evolution of some polyploid species, there has been a tendency to reduce the number of rDNA sites. Additionally, polymorphism in rDNA site number was observed. Possible mechanisms of rDNA locus evolution are discussed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

14.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error‐free branch of post‐replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication‐associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single‐strand break repair (AtPARP1), as well as microhomology‐mediated double‐strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM‐mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.  相似文献   

15.
The RAD52 gene product of the yeast Saccharomyces cerevisiae is required for most spontaneous recombination and almost all double-strand break (DSB) repair. In contrast to recombination elsewhere in the genome, recombination in the ribosomal DNA (rDNA) array is RAD52 independent. To determine the fate of a DSB in the rDNA gene array, a cut site for the HO endonuclease was inserted into the rDNA in a strain containing an inducible HO gene. DSBs were efficiently repaired at this site, even in the absence of the RAD52 gene product. Efficient RAD52-independent DSB repair was also observed at another tandem gene array, CUP1, consisting of 18 repeat units. However, in a smaller CUP1 array, consisting of only three units, most DSBs (ca. 80%) were not repaired and resulted in cell death. All RAD52-independent DSB repair events examined resulted in the loss of one or more repeat units. We propose a model for DSB repair in repeated sequences involving the generation of single-stranded tails followed by reannealing.  相似文献   

16.
Meiotic crossover (CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2 (BRCA2) and AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filaments. Our results revealed that ZmBRCA2 is not only involved in the repair of DNA double-stranded breaks (DSBs), but also regulates CO formation in a dosage-dependent manner. In addition, ZmFIGL1 interacts with RAD51 and DMC1, and Zmfigl1 mutants had a significantly reduced number of RAD51/DMC1 foci and COs. Further, simultaneous loss of ZmFIGL1 and ZmBRCA2 abolished RAD51/DMC1 foci and exacerbated meiotic defects compared with the single mutant Zmbrca2 or Zmfigl1. Together, our data demonstrate that ZmBRCA2 and ZmFIGL1 act coordinately to regulate the dynamics of RAD51/DMC1-dependent DSB repair to promote CO formation in maize. This conclusion is surprisingly different from the antagonistic roles of BRCA2 and FIGL1 in Arabidopsis, implying that, although key factors that control CO formation are evolutionarily conserved, specific characteristics have been adopted in diverse plant species.  相似文献   

17.
In recent years, multiple factors involved in DNA double‐strand break (DSB) repair have been characterised in Arabidopsis thaliana. Using homologous sequences in somatic cells, DSBs are mainly repaired by two different pathways: synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA). By applying recombination substrates in which recombination is initiated by the induction of a site‐specific DSB by the homing endonuclease I‐SceI, we were able to characterise the involvement of different factors in both pathways. The nucleases MRE11 and COM1, both involved in DSB end processing, were not required for either SDSA or SSA in our assay system. Both SDSA and SSA were even more efficient without MRE11, in accordance with the fact that a loss of MRE11 might negatively affect the efficiency of non‐homologous end joining. Loss of the classical recombinase RAD51 or its two paralogues RAD51C and XRCC3, as well as the SWI2/SNF2 remodelling factor RAD54, resulted in a drastic deficiency in SDSA but had hardly any influence on SSA, confirming that a strand exchange reaction is only required for SDSA. The helicase FANCM, which is postulated to be involved in the stabilisation of recombination intermediates, is surprisingly not only needed for SDSA but to a lesser extent also for SSA. Both SSA and SDSA were affected only weakly when the SMC6B protein, implicated in sister chromatid recombination, was absent, indicating that SSA and SDSA are in most cases intrachromatid recombination reactions.  相似文献   

18.
19.
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.  相似文献   

20.
Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d‐rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p‐rDNA dominant progenitor were meiotically unstable, frequently switching to co‐dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d‐rDNA dominance, indicating immediate suppression of p‐homeologs in F1 hybrids. Original p‐rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p‐rDNA and d‐rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co‐dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号