首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low‐copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome‐wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome‐wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova , we conclude that there are two genetically distinct O. rufipogon groups, Ruf‐I and Ruf‐II. The two groups exhibit a clinal variation pattern generally from north‐east to south‐west. Different from many earlier studies, Ruf‐I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf‐II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration–drift balance in creating this clinal variation pattern is also discussed.  相似文献   

2.
Previous studies have indicated that China is one of the domestication centres of Asian cultivated rice (Oryza sativa), and common wild rice (Orufipogon) is the progenitor of Osativa. However, the number of domestication times and the geographic origin of Asian cultivated rice in China are still under debate. In this study, 100 accessions of Asian cultivated rice and 111 accessions of common wild rice in China were selected to examine the relationship between Osativa and Orufipogon and thereby infer the domestication and evolution of Osativa in China through sequence analyses of six gene regions, trnC‐ycf6 in chloroplast genomes, cox3 in mitochondrial genomes and ITS, Ehd1, Waxy, Hd1 in nuclear genomes. The results indicated that the two subspecies of Osativa (indica and japonica) were domesticated independently from different populations of Orufipogon with gene flow occurring later from japonica to indica; Southern China was the genetic diversity centre of Orufipogon, and the Pearl River basin near the Tropic of Cancer was the domestication centre of Osativa in China.  相似文献   

3.
Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene‐enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous–nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome‐wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri‐nucleotide repeats were most common among the SSRs and were overrepresented in the protein‐coding sequences, we found that selection against indels of tri‐nucleotide repeats was relatively weak in both African and Asian rice. Our genome‐wide sequencing of O. glaberrima and in‐depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.  相似文献   

4.
5.
Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the ‘agricultural weed syndrome’, making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed‐crop pairs, but are not shared among all weed‐crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms.  相似文献   

6.
In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized Into two families, mPing-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. 0. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas 0. sativa indica has a higher proportion of roPing-2. We also examined the mPing system In a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes. Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the roPing system in 0. rufipogon. The distribution pattern of the roPing system in O. rufipogon indicated a diphyletlc origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. ruflpogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. ruflpogon.  相似文献   

7.
Crop-to-wild introgression may play an important role in evolution of wild species. Asian cultivated rice (Oryza sativa L.) is of a particular concern because of its cross-compatibility with the wild ancestor, O. rufipogon Griff. The distribution of cultivated rice and O. rufipogon populations is extensively sympatric, particularly in Asia where many wild populations are surrounded by rice fields. Consequently, gene flow from cultivated rice may have a potential to alter genetic composition of wild rice populations in close proximity. In this study, we estimated introgression of cultivated rice with O. rufipogon based on analyses of 139 rice varieties (86 indica and 53 japonica ecotypes) and 336 wild individuals from 11 O. rufipogon populations in China. DNA fingerprinting based on 17 selected rice simple sequence repeat (SSR) primer pairs was adopted to measure allelic frequencies in rice varieties and O. rufipogon samples, and to estimate genetic associations between wild and cultivated rice through cluster analysis. We detected consanguinity of cultivated rice in O. rufipogon populations according to the admixture model of the STRUCTURE program. The analyses showedz that four wild rice populations, DX-P1, DX-P2, GZ-P2, and HL-P, contained some rare alleles that were commonly found in the rice varieties examined. In addition, the four wild rice populations that scattered among the rice varieties in the cluster analysis showed a closer affinity to the cultivars than the other wild populations. This finding supports the contention of substantial gene flow from crop to wild species when these species occur close to each other. The introgressive populations had slightly higher genetic diversity than those that were isolated from rice. Crop-to-wild introgression may have accumulative impacts on genetic variations in wild populations, leading to significant differentiation in wild species. Therefore, effective measure should be taken to avoid considerable introgression from cultivated rice, which may influence the effective in-situ conservation of wild rice species.  相似文献   

8.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

9.
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the ‘Oryza Map Alignment Project’ (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project’s finished reference genome – O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara – thought to be the progenitor of modern cultivated rice.  相似文献   

10.
The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon‐like population, referred to as Taxon A, and O. meridionalis‐like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short‐ and long‐read next‐generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.  相似文献   

11.
An ∼247-kb genomic region from FF genome of wild rice Oryza brachyantha, possessing the smallest Oryza genome, was compared to the orthologous ∼450-kb region from AA genome, O. sativa L. ssp. japonica. 37 of 38 genes in the orthologous regions are shared between japonica and O. brachyantha. Analyses of nucleotide substitution in coding regions suggest the two genomes diverged ∼10 million years ago. Comparisons of transposable elements (TEs) reveal that the density of DNA TEs in O. brachyantha is comparable to O. sativa; however, the density of RNA TEs is dramatically lower. The genomic fraction of RNA TEs in japonica is two times greater than in O. brachyantha. Differences, particularly in RNA TEs, in this region and in BAC end sequences from five wild and two cultivated Oryza species explain major genome size differences between sativa and brachyantha. Gene expression analyses of three ObDREB1 genes in the sequenced region indicate orthologous genes retain similar expression patterns following cold stress. Our results demonstrate that size and number of RNA TEs play a major role in genomic differentiation and evolution in Oryza. Additionally, distantly related O. brachyantha shares colinearity with O. sativa, offering opportunities to use comparative genomics to explore the genetic diversity of wild species to improve cultivated rice. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Data deposition: Sequence data from this article were deposited with GenBank Library under accession number DQ810282. Shibo Zhang and Yong Qiang Gu contributed equally to the work  相似文献   

12.
The purpose of this study was to construct a comparative RFLP map of an allotetraploid wild rice species, Oryza latifolia, and to study the relationship between the CCDD genome of O. latifolia and the AA genome of O. sativa. A set of RFLP markers, which had been previously mapped to the AA genome of cultivated rice, were used to construct the comparative map. Fifty-eight F2 progeny, which were derived from a single F1 plant, were used for segregation analysis. The comparative RFLP map contains 149 DNA markers, including 145 genomic DNA markers from cultivated rice, 3 cDNA markers from oat, and one known gene (waxy, from maize). Segregation patterns reflected the allotetraploid ancestry of O. latifolia, and the CC and DD genomes were readily distinguished by most probes tested. There is a high degree of conservation between the CCDD genome of O. latifolia and the AA genome of O. sativa based on our data, but some inversions and translocations were noted.  相似文献   

13.
14.
Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L. ) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice. Received: 19 May 1999 / Accepted: 26 April 2000  相似文献   

15.
Genome-specific repetitive sequences in the genus Oryza   总被引:1,自引:0,他引:1  
Summary Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species divergence. In this paper, we report the isolation and characterization of four genome-type specific repetitive DNA sequences in the genus Oryza. Sequences specific to the AA, CC, EE or FF genome types are described. These genome-type specific repetitive sequences will be useful in classifying unknown species of wild or domestic rice, and in studying genome evolution at the molecular level. Using an AA genome-specific repetitive DNA sequence (pOs48) as a hybridization probe, considerable differences in its copy number were found among different varieties of Asian-cultivated rice (O. sativa) and other related species within the AA genome type. Thus, the relationship among some of the members of AA genome type can be deduced based on the degree of DNA sequence similarity of this repetitive sequence.  相似文献   

16.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

17.
Plants frequently possess operon‐like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane‐related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent‐copalyl diphosphate or syn‐copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical‐modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane‐related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon‐like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.  相似文献   

18.

Background  

Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution.  相似文献   

19.
In the thousands of years of rice domestication in Asia, many useful genes have been lost from the gene pool. Wild rice is a key source of diversity for domesticated rice. Genome sequencing has suggested that the wild rice populations in northern Australia may include novel taxa, within the AA genome group of close (interfertile) wild relatives of domesticated rice that have evolved independently due to geographic separation and been isolated from the loss of diversity associated with gene flow from the large populations of domesticated rice in Asia. Australian wild rice was collected from 27 sites from Townsville to the northern tip of Cape York. Whole chloroplast genome sequences and 4,555 nuclear gene sequences (more than 8 Mbp) were used to explore genetic relationships between these populations and other wild and domesticated rices. Analysis of the chloroplast and nuclear data showed very clear evidence of distinctness from other AA genome Oryza species with significant divergence between Australian populations. Phylogenetic analysis suggested the Australian populations represent the earliest‐branching AA genome lineages and may be critical resources for global rice food security. Nuclear genome analysis demonstrated that the diverse O. meridionalis populations were sister to all other AA genome taxa while the Australian O. rufipogon‐like populations were associated with the clade that included domesticated rice. Populations of apparent hybrids between the taxa were also identified suggesting ongoing dynamic evolution of wild rice in Australia. These introgressions model events similar to those likely to have been involved in the domestication of rice.  相似文献   

20.
Flowering time is a major determinant for the local adaptation of crops. Hd1 is a key flowering-time gene in rice and is orthologous to the Arabidopsis CONSTANS gene. To elucidate the role of Hd1 in selection, we examined the Hd1 alleles of 60 landraces of Asian cultivated rice (Oryza sativa L.) originating from all regions of Asia, which comprised three cultivar groups, indica, japonica, and aus. The identified alleles were classified into four allele groups. The functional Hd1 alleles in allele groups I and II corresponded to indica and japonica, respectively. Non-functional alleles in these groups were not clearly associated with cultivar groups or locations. Allele groups III and IV corresponded to the aus cultivar group. The ancestry of each cultivar group was identified by the coalescent approach for Hd1 molecular evolution using the haplotype patterns of 14 regions over the 1.1 Mb chromosomal region surrounding Hd1 and the pSINE patterns of two loci, 1.4 and 4.4 Mb apart from Hd1. The haplotype patterns clearly revealed that Hd1 allele migration was caused by multiple and complex introgression events between cultivar groups. The Hd1 haplotypes among dozens of accessions of the wild species O. rufipogon were strongly divergent and only two of the haplotype clusters in O. rufipogon were closely related to those in cultivated rice. This strongly suggested that multiple introgression events have played an important role in the shaping and diversification of adaptation in addition to primary selection steps at the beginning of domestication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号