首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases.

Scope and Conclusions

This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.  相似文献   

2.
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin–carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall‐degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat‐stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.  相似文献   

3.
Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG–I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG–I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG–I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG–I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG–I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG–I glycan complexity in the context of cell‐wall architectures and in relation to cell‐wall functions in cell and tissue development.  相似文献   

4.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   

5.
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.  相似文献   

6.
植物细胞壁中的伸展蛋白   总被引:1,自引:0,他引:1  
随着实验技术的发展尤其是分子生物学技术的应用 ,植物细胞壁的研究已取得丰硕的成果。植物细胞壁中最重要的结构蛋白———伸展蛋白 ,是高等植物细胞壁中一族富含羟脯氨酸的糖蛋白 ,起强固细胞壁的作用。本文综述了近几十年对伸展蛋白的分离纯化、结构、生物合成、功能作用及其基因和表达的控制方面的研究  相似文献   

7.
It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged a-tubulin 6 (GFP-TUA6) in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a de- crease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6 overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFP- TUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development. Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls.  相似文献   

8.
The plant cell wall is a highly organized composite of many different polysaccharides, proteins and aromatic substances. These complex matrices define the shape of each individual cell, and ultimately, they are the determinants of plant morphology. The fine structures of the major angiosperm cell wall polysaccharides have been characterized, but it is not well understood how these polysaccharides are assembled into a metabolically active architecture. Cell wall biogenesis and remodeling may be partitioned into six major stages of development (precursor synthesis, polymerization, secretion, assembly, rearrangement and disassembly), and to date, a handful of mutations have been identified that affect the composition and structure in each of these stages. To greatly augment this collection, we have initiated a program to use Fourier transform infrared spectroscopy as a high through-put screen to identify a broad range of cell-wall mutants of Arabidopsis and maize. We anticipate that such mutants will be useful to probe the impact of the individual components and their metabolism on basic processes of plant growth and development. The structures of dicot and grass walls, the identification of representative cell wall mutants, and the use of a novel spectroscopic screen to identify many more cell wall mutants, are briefly reviewed.  相似文献   

9.
In multicellular systems, the control of cell size is fundamental in regulating the development and growth of the different organs and of the whole organism. In most systems, major changes in cell size can be observed during differentiation processes where cells change their volume to adapt their shape to their final function. How relevant changes in cell volume are in driving the differentiation program is a long‐standing fundamental question in developmental biology. In the Arabidopsis root meristem, characteristic changes in the size of the distal meristematic cells identify cells that initiated the differentiation program. Here, we show that changes in cell size are essential for the initial steps of cell differentiation and that these changes depend on the concomitant activation by the plant hormone cytokinin of the EXPAs proteins and the AHA1 and AHA2 proton pumps. These findings identify a growth module that builds on a synergy between cytokinin‐dependent pH modification and wall remodeling to drive differentiation through the mechanical control of cell walls.  相似文献   

10.
植物细胞壁蛋白质组学研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
植物细胞壁蛋白质在细胞代谢和发育调控、细胞壁组分修饰、信号转导及胁迫响应等生物学事件中具有重要功能.最近,国内外学者开展了大量植物细胞壁蛋白质组学的研究工作,并取得了巨大进展.本文详述了细胞壁蛋白质的分类、提取、鉴定及生物信息学分析的最新进展,总结了植物细胞壁蛋白质组学的应用和面临的挑战,提出了植物细胞壁蛋白质组学研究的框架图,以期为植物细胞壁蛋白质组学的广泛研究提供借鉴.  相似文献   

11.
本文简要介绍植物与病原菌在细胞壁层面上的相互作用,并从植物细胞对受侵过程中细胞壁损伤的感知、细胞壁损伤引起植物抗病信号途径的活化、植物细胞壁防卫反应的分子机制等方面重点概述植物细胞壁抗性及其分子机制。  相似文献   

12.
13.
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics,manyachievementshavebeenmadein uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging,nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review,we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.  相似文献   

14.
应用实验室常用仪器和电子部件,包括直流稳压电源、等臂双盘天平、记录仪、恒流泵、程控仪、线性可变差动变压器(LVDT)、电磁间等,改装和配置成的植物细胞壁伸展性能测定仪,具有操作简便、测量准确和灵敏度高等优点;对大豆幼苗下胚轴生长区细胞壁的内源伸展活性和重组伸展活性的实测结果与文献报告相符,表明该仪器是一种较为理想的准确测定植物细胞壁伸展性能的自动化仪器。  相似文献   

15.
Mutations of the secondary cell wall   总被引:6,自引:0,他引:6  
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.  相似文献   

16.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

17.
Lignocellulose biomass derived from plant cell walls is a rich source of biopolymers, chemicals, and sugars, besides being a sustainable alternative to petrochemicals. A natural armor protecting living protoplasts, the cell wall is currently the target of intense study because of its crucial importance in plant development, morphogenesis, and resistance to (a)biotic stresses. Beyond the intrinsic relevance related to the overall plant physiology, plant cell walls constitute an exquisite example of a natural composite material that is a constant source of inspiration for biotechnology, biofuel, and biomaterial industries. The aim of the present review is to provide the reader with an overview of the current knowledge concerning lignocellulosic biomass synthesis and degradation, by focusing on its three principal constituents, i.e. cellulose, hemicellulose (in particular xylan), and lignin. Furthermore, the current industrial exploitation of lignocellulose from fast growing fibre crops (such as hemp) is highlighted. We conclude this review by suggesting approaches for further research to fill gaps in our current knowledge and to highlight the potential of biotechnology and bioengineering in improving both biomass biosynthesis and degradation.  相似文献   

18.
本文综述了国内外有关被子植物生殖细胞壁的资料,概述了它的形成、发育、性质和功能;在这些方面,生殖细胞壁的特征因植物种类而异。  相似文献   

19.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

20.
Nonaqueous titration was used for detection of free amino groups in the polymeric matrix of plant cell walls. The content of amino groups varied in the range 0.54–0.91 and total nitrogen in the range 1.0–4.2 mmol per gram dry mass of cell walls depending on the plant species. However, these data on the high content of free amino groups do not correlate with the present day concept that the nitrogen fraction in charged amino groups in plant cell wall proteins, which are assumed to be mainly amino groups of lysine and arginine residues, is about 10%. It is supposed that most detected free amino groups belong to the hydroxy-amino acids hydroxyproline and tyrosine that can be bound at the hydroxyl group with the carbohydrate part of glycoprotein or another structural cell wall polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号