首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
辽东山区典型森林生态系统碳密度   总被引:4,自引:0,他引:4  
以辽东山区典型森林生态系统为研究对象,通过系统的样地调查并结合辽宁省2009年森林资源二类调查资料,利用异速生长方程和植被类型法对典型森林生态系统不同组分碳密度及碳储量进行估算.结果显示,辽东山区森林生态系统碳密度为300.050Mg· hm-2,各层碳密度的大小顺序为:土壤层(232.452 Mg·hm-2)>乔木层( 63.237Mg · hm-2)>凋落物层(3.529 Mg·hm-2)>灌木层(0.558 Mg · hm-2)>草本层(0.274Mg·hm-2).乔木层碳密度随着林龄的增加而增大,灌木层碳密度随着林龄的增加而减小,土壤、草本和凋落物层碳密度在不同龄组间的变化没有明显的规律性.辽东山区305.852×104 hm2的生态系统碳储量为917.709 Tg C,其中生物量碳储量为206.751Tg C,土壤碳储量为710.959 Tg C,土壤碳储量是生物量碳储量的3.44倍.通过比较本次调查结果与以往研究结果发现,利用森林清查资料,由于低估了幼龄林的乔木碳密度,导致辽东山区的乔木碳储量低估,且以往研究中用简单的换算系数高估了林下植被碳密度,但远低估了土壤碳密度.  相似文献   

2.
四川森林土壤有机碳储量的空间分布特征   总被引:29,自引:0,他引:29  
利用森林土壤实测数据与GIS相结合的研究方法估算了四川森林土壤有机碳密度和碳储量,研究了四川森林土壤有机碳密度的空间分布特征.四川森林土壤有机碳储量为(2394.26 ±514.15) TgC,平均碳密度为190.45 Mg·hm-2;四川不同森林类型土壤有机碳储量和碳密度差异较大,分别介于(5.05±0.37)~(1101.74±205.40) TgC、(102.69±21.09)~(264.41±49.24) Mg·hm-2之间,其有机碳含量、碳密度和碳储量都随土层厚度的增加而降低.四川森林土壤有机碳密度空间分布特征明显,总体上表现出随纬度、海拔高度的增加而增加,随经度的增加而减小.从森林土壤生态系统水平监测森林土壤有机碳储量有助于提高其估算精度.  相似文献   

3.
山东省森林有机碳储量及其动态的研究   总被引:23,自引:0,他引:23       下载免费PDF全文
以各森林类型为统计单元 ,得出山东省现有森林有机碳储量为 43 .41Tg ,占全国的 1 .2 3 % ,是全国单位面积碳储量平均水平的 78.72 % (按土地面积计 ) ,各森林类型碳密度差异较大 ,介于 0 .40~ 49.46Mg·hm- 2 之间 ,密度大小与人为干扰程度有直接关系。并根据历年森林有机碳储量与碳密度变化情况 ,对未来 1 0年山东省的有机碳储量及碳密度变化情况进行了预测 ,在 3年后 ,森林有机碳储量接近全国平均水平 ,至 2 0 1 0年 ,全省森林有机碳储量可达 90 .31Tg ,比现在增长 1 .0 8倍  相似文献   

4.
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明:2004年,林芝地区森林碳储量为2.43×1O8 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

5.
四川省森林植被碳储量的空间分异特征   总被引:8,自引:0,他引:8  
黄从德  张健  杨万勤  唐宵  张国庆 《生态学报》2009,29(9):5115-5121
森林植被碳储量的空间分异特征研究可为以减排增汇为目标的森林生态系统碳库管理提供重要的基础数据.根据实测的林分含碳量和区域生物量-蓄积量回归模型计算了四川省森林植被碳储量,使用ArcGIS软件绘制和分析了四川森林植被碳储量的空间分异特征.结果表明,四川省森林植被的平均碳密度为38.04 MgC·hm-2(12.15~59.51 MgC·hm-2).受青藏高原隆升和人类活动干扰及其叠加效应的影响,四川森林植被碳密度空间分异明显,总体上表现出随纬度、海拔高度和坡度的增加而增加,随经度的增加而减小,高海拔地区和陡坡地带具有较高的碳密度.减少人类活动对森林的破坏及采取森林分区经营管理是稳定和增强四川森林碳汇功能的有效途径.  相似文献   

6.
秦岭宁陕县森林植被碳储量与碳密度特征   总被引:1,自引:0,他引:1  
邓蕾  上官周平 《西北植物学报》2011,31(11):2310-2320
以秦岭南坡中段宁陕县林区2003年二类森林调查资料为基础,采用政府间气候变化委员会(IPCC)推荐使用的森林碳储量估算方法,从森林类型、林种、年龄和林分起源的角度,对该林区森林植被碳储量和碳密度进行估算。结果显示:(1)宁陕县森林植被碳储量为12.31Tg(1Tg=1×1012 g),平均碳密度为66.36Mg/hm2(1Mg=1×106 g),其各乡镇森林植被碳储量和碳密度在空间上的分布不平衡。(2)各森林类型中针叶林总碳储量为0.71Tg,平均碳密度为64.11 Mg/hm2,阔叶林总碳储量为11.61Tg,占宁陕县总碳储量的94.3%,碳密度为67.65Mg/hm2。(3)各林种中防护林碳储量最大(8.13Tg),占宁陕县总碳储量的66%,特种用途林碳密度最大(81.43Mg/hm2)。(4)不同林分起源中,天然林碳储量为12.231Tg,占宁陕县总碳储量的99.3%,人工林碳储量较小。(5)不同年龄森林中未成熟森林(包括幼龄林、中龄林和近熟林)碳储量为12.13Tg,占总碳储量的98.5%,近熟林碳密度最大(80.14Mg/hm2),幼龄林碳密度最小(39.85Mg/hm2)。研究表明,宁陕县森林具有较大的固碳能力和固碳潜力,其森林面积和蓄积是决定森林碳储量大小的重要因子,而森林碳密度的大小与森林类型、年龄组成和林分起源方式密切相关。  相似文献   

7.
刘领  王艳芳  悦飞雪  李冬  赵威 《生态学报》2019,39(3):864-873
利用1994—1998年、1999—2003年、2004—2008年、2009—2013年河南省4期森林资源清查数据,运用生物量转换因子连续函数法和平均生物量法,估算了1998—2013年河南省森林植被的碳储量和碳密度变化。研究结果表明,河南省森林植被碳储量由1998年的45.57 Tg增加到2013年的107.98 Tg,年均碳汇量为4.16 Tg/a。乔木林碳储量和碳密度分别由1998年的33.54 Tg和22.39 Mg/hm~2增加到2013年的97.11 Tg和31.80 Mg/hm~2。乔木林碳储量在所有植被类型中占主体,4个森林清查时期乔木林碳储量占森林植被总碳储量的比例分别为73.60%、79.22%、85.63%和89.93%。2013年森林清查时,乔木林中杨树和栎类碳储量最大,分别占总碳储量的37.61%和25.22%,各龄组乔木林碳密度大小顺序依次为成熟林近熟林中龄林过熟林幼龄林。阔叶林面积、碳储量、碳密度均高于针叶林,阔叶林是河南省森林碳汇的主要贡献者。人工林面积、碳储量、碳密度增加幅度都要高于天然林,人工林碳储量由1998年的9.62 Tg增加到2013年的55.67 Tg,占乔木林碳储量总增量的77.15%,人工林碳密度由1998年的17.86 Mg/hm~2提高到2013年的32.01 Mg/hm~2,人工林在河南省森林碳汇中逐步发挥重要的作用,逐渐成为河南省森林碳汇的主体,随着人工林生长为具有较高碳密度的成熟林,河南省乔木林将具有较大的碳汇潜力。  相似文献   

8.
四川人工林生态系统碳储量特征   总被引:19,自引:1,他引:18  
利用森林资源清查资料和标准地实测数据估算了四川人工林生态系统的碳密度、碳储量及分配特征.结果表明:四川人工林生态系统平均碳密度为161.16 Mg C·hm-2,各层碳密度从大到小排序为土壤层(141.64 Mg C·hm-2)>乔木层(17.95 Mg C·hm-2)>枯落物层(1.06 Mg C·hm-2)>灌草层(0.52 Mg C·hm-2).四川人工林生态系统总碳储量为573.57 Tg C,其中乔木层、灌草层、枯落物层和土壤层分别为63.88、1.836、3.764和504.09 Tg C,分别占总碳量的11.14%、0.32%、0.66%和87.88%.不同人工林生态系统的碳储量和碳密度差异较大,分别介于1.21~99.44 Tg C和75.50~251.74 Mg C·hm-2之间,其空间分配也表现为土壤层最大、灌草层最小.但四川省人工林生态系统乔木层碳密度较低,幼、中龄林分比重大,如果对现有人工林加以更好的管理,碳吸存潜力较大.从生态系统水平监测人工林生态系统的碳储量有助于提高森林碳吸存估算的精度.  相似文献   

9.
人工林生态系统碳储量的空间分配格局对全球陆地碳循环有重要的影响,但湖南省杉木人工林生态系统碳储量的分配格局并不清楚。本研究在湖南省样地野外调查的基础上,结合第八次全国森林资源清查的结果,计算出湖南省杉木人工林生态系统的碳储量空间分布格局。结果表明:杉木人工林生态系统碳密度随着林龄增加而增加,幼龄林、中龄林和成熟林分别为125.70、138.57、193.72 Mg·hm~(-2);其中,幼龄林、中龄林和成熟林的植被生物量碳密度分别为18.72、38.86、62.48 Mg·hm~(-2);土壤碳密度随着林分发育先降低后增加,幼龄林为105.49 Mg·hm~(-2)、中龄林为97.23 Mg·hm~(-2)、成熟林126.7 Mg·hm~(-2);湖南省杉木人工林生态系统碳储量为307.48 Tg,其中幼龄林为90.57 Tg,中龄林为91.87 Tg,成熟林为125.31 Tg;湖南省杉木人工林生态系统的固碳潜力为85.56 Tg,其中,植被固碳潜力为47.19 Tg,土壤的固碳潜力为34.82 Tg。确定杉木人工林固碳潜力有助于量化人工林对碳汇的贡献及其制定实现潜力的森林经营管理措施。  相似文献   

10.
青海省森林乔木层碳储量现状及固碳潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

11.
宁夏回族自治区森林生态系统固碳现状   总被引:6,自引:2,他引:4  
根据宁夏回族自治区森林资源清查资料以及野外调查和室内分析的结果,研究了宁夏地区森林生态系统固碳现状,估算了该区森林生态系统的碳密度、碳储量,并分析了其空间分布特征.结果表明: 宁夏森林各植被层生物量大小顺序为: 乔木层(46.64 Mg·hm-2)>凋落物层(7.34 Mg·hm-2)>细根层(6.67 Mg·hm-2)>灌草层(0.73 Mg·hm-2).云杉类(115.43 Mg·hm-2)和油松(94.55 Mg·hm-2)的单位面积植被生物量高于其他树种.不同林龄乔木层碳密度中,过熟林最高,但由于幼龄林面积所占比例最大,其乔木层碳储量(1.90 Tg C)最大.宁夏地区森林生态系统平均碳密度为265.74 Mg C·hm-2,碳储量为43.54 Tg C,其中,植被层平均碳密度为27.24 Mg C·hm-2、碳储量为4.46 Tg C,土壤层碳储量是植被层的8.76倍.宁夏地区的森林碳储量整体呈南高北低分布,总量较低.这与其森林面积小和林龄结构低龄化有很大关系.随着林龄结构的改善和林业生态工程的进一步实施,宁夏森林生态系统将发挥巨大的固碳潜力.  相似文献   

12.
广西主要森林植被碳储量及其影响因素   总被引:5,自引:0,他引:5  
广西森林面积和覆盖率位居全国前列,在全国和区域碳平衡中起着至关重要的作用。正确评价广西森林植被碳储量、碳储量的时空格局及其影响因素对我国碳循环及碳汇研究具有十分重要的意义。为阐明广西森林植被碳储量分布格局及其主要影响因素,基于广西10类主要森林类型345个样地的调查,结合森林资源清查资料,估算广西主要森林植被碳储量,探讨广西不同森林类型、不同龄组、不同层次的碳储量组成与分配。采用地统计学方法描绘了植被碳密度空间分布,并采用主成分分析方法和回归分析方法分析了植被碳储量的影响因素。结果表明:广西主要森林植被总碳储量达到746.06 Tg(1Tg=10~(12) g),平均碳密度为55.37 t/hm~2,松树、杉木、桉树、栎类、软阔、硬阔、石山林、竹林、八角和油茶林对广西植被碳储量的贡献比例分别为26.83%、12.28%、6.67%、3.03%、20.37%、16.32%、10.84%、0.88%、1.38%和1.39%。各森林类型植被碳密度介于20.77—108.28 t/hm~2,大小顺序为硬阔软阔松树杉木栎类石山林桉树八角竹林油茶。广西区森林植被碳密度在7.05—219.73 t/hm~2之间,总体表现为广西北部、西南部和广西东部存在高值区,广西中部和东南部有明显的低值区。碳储量以乔木层占优势,且随林龄增大呈逐渐增加的趋势。影响广西植被碳储量的主控因子是平均胸径、林龄和林分密度,经度、碱解氮、全氮、有机碳是影响碳储量的关键因子。  相似文献   

13.
甘肃省森林碳储量现状与固碳速率   总被引:1,自引:0,他引:1       下载免费PDF全文
针对森林碳平衡再评估的重要性和区域尺度森林生态系统碳库量化分配的不确定性, 该研究依据全国森林资源连续清查结果中甘肃省各森林类型分布的面积与蓄积比重以及林龄和起源等要素, 在甘肃省布设212个样地, 经野外调查与采样、室内分析, 并对典型样地信息按照面积权重进行尺度扩展, 估算了甘肃省森林生态系统碳储量及其分布特征。结果表明: 甘肃省森林生态系统总碳储量为612.43 Tg C, 其中植被生物量碳为179.04 Tg C, 土壤碳为433.39 Tg C。天然林是甘肃省碳储量的主要贡献者, 其值为501.42 Tg C, 是人工林的4.52倍。天然林和人工林的植被碳密度均表现为随林龄的增加而增加的趋势, 同一龄组天然林植被碳密度高于人工林。天然林土壤碳密度从幼龄林到过熟林逐渐增加, 但人工林土壤碳密度最大值主要为近熟林。全省森林植被碳密度均值为72.43 Mg C·hm-2, 天然林和人工林分别为90.52和33.79 Mg C·hm-2。基于森林清查资料和标准样地实测数据, 估算出全省天然林和人工林在1996年的植被碳储量为132.47和12.81 Tg C, 2011年分别为152.41和26.63 Tg C, 平均固碳速率分别为1.33和0.92 Tg C·a-1。甘肃省幼、中龄林面积比重较大, 占全省的62.28%, 根据碳密度随林龄的动态变化特征, 预测这些低龄林将发挥巨大的碳汇潜力。  相似文献   

14.
《植物生态学报》2016,40(4):374
Aims
Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region.
Methods
Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau.
Important findings
The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg·hm-2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg·a-1 and 0.19 Mg·hm-2·a-1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg·hm-2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

15.
为明晰青藏高原高寒区阔叶林植被碳储量现状及其动态变化特征, 利用森林资源清查数据和标准样地实测数据, 估算了青藏高原高寒区(青海和西藏两省区)阔叶林植被的碳储量、固碳速率和固碳潜力。结果表明: 2011年青藏高原高寒区阔叶林植被碳储量为310.70 Tg, 碳密度为89.04 Mg·hm-2。六类阔叶林型(栎(Quercus)林、桦木(Betula)林、杨树(Populus)林、其他硬阔林、其他软阔林和阔叶混交林)中, 阔叶混交林的碳储量最大, 杨树林碳储量最小; 其他硬阔林碳密度最大, 其他软阔林碳密度最小。空间分配上碳储量和碳密度表现为: 乔木层>灌木层>凋落物层>草本层>枯死木层。不同龄级碳储量和碳密度总体表现为随林龄增加逐渐增大的趋势。阔叶林碳储量从2001年的304.26 Tg增加到2011年的310.70 Tg, 平均年固碳量为0.64 Tg·a-1, 固碳速率为0.19 Mg·hm-2·a-1。不同林型固碳速率表现为其他软阔林最大, 其他硬阔林最小; 不同龄级表现为成熟林最大, 幼龄林最小。阔叶林乔木层固碳潜力为19.09 Mg·hm-2, 且不同林型固碳潜力表现为栎林最大, 桦树林最小。三次调查期间阔叶林碳储量逐渐增加, 主要原因是近年来森林保护工程的开展使阔叶林生长健康良好。  相似文献   

16.
《植物生态学报》2016,40(4):304
Aims
Carbon sequestration is the basic function and most primary service of forest ecosystems, and plays a vital role in mitigating the global climate change. However, carbon storage and allocation in forest ecosystems have been less studied at regional scales than at forest stand levels, and the results are subject to uncertainty due to inconsistent methodologies. In this study we aim to obtain relatively accurate estimates of forest carbon stocks and sequestration rate at a provincial scale (regional) based on plot surveys of plants and soils.
Methods
In consideration of the areas and distributions of major forest types, 212 sampling plots, covering different age classes and origins (natural forests vs. planted forests), were surveyed in Gansu Province in northern China. Field investigations were conducted for vegetation layers (trees, shrubs, herbs and litter), soil profiles, and sampling of both plant materials and soils for laboratory analyses. Regional carbon stocks were calculated by up-scaling the carbon densities of all forest types with their corresponding areas. Carbon sequestration rate was estimated by referencing the reports of national forest inventory data for different periods.
Important findings Forest carbon stocks at the provincial scale were estimated at 612.43 Tg C, including 179.04 Tg C in biomass and 433.39 Tg C in soil organic materials. Specifically, natural forests stored 501.42 Tg C, approximately 4.52 times than that of the plantations. Biomass carbon density in both natural forests and plantations showed an increasing trend with stand age classes, and was greater in natural forests than in plantations within the same age classes. Soil carbon density also increased with stand age classes in natural forests, but the highest value occurred at the pre-mature stage in plantations. The weighted average of regional biomass carbon density was at 72.43 Mg C·hm-2, with the average value of 90.52 Mg C·hm-2 in natural forests and 33.79 Mg C·hm-2 in plantations, respectively. In 1996, vegetation stored 132.47 Tg C in natural forests and 12.81 Tg C in plantations, respectively, and the values increased to 152.41 and 26.63 Tg C in 2011, with the mean carbon sequestration rates of 1.33 and 0.92 Tg C·a-1. Given that young and middle-aged forests account for a large proportion (62.28%) of the total forest areas, the region is expected to have substantial potential of carbon sequestration.  相似文献   

17.
江西中南部红壤丘陵区主要造林树种碳固定估算   总被引:4,自引:0,他引:4  
吴丹  邵全琴  李佳  刘纪远 《生态学报》2012,32(1):142-150
本文根据江西第6次森林清查小班数据,通过基于实地调查数据拟合的森林植被生物量与蓄积量的关系,估算了2003年江西中南部红壤丘陵区泰和县和兴国县主要人工造林树种马尾松、湿地松、杉木林的生物量和碳储量,并采用空间替代时间的方法,利用Logistic方程拟合了三个树种林龄与碳密度的曲线关系,估算了研究区1985-2002年的森林植被生物量和碳储量,分析了时空动态特征。结果表明:(1) 2003年研究区主要造林树种林分面积31.04?104hm2,总生物量22.20Tg,总碳储量13.07TgC,平均碳密度42.36tC/hm2。(2) 1985、1994、2003年三个树种植被碳储量分别为4.91、11.41和13.07TgC,年均固碳量0.45 TgC.a-1。(3) 海拔位于700-900m之间的树种平均碳密度最大,坡度位于25~35?之间的树种平均碳密度最大。森林植被碳密度总体上呈现随海拔高度的增加而增加,随坡度的增大而增大的分布。人工造林工程使江西中南部红壤丘陵区森林植被碳储量明显增加,合理的森林经营管理可以提高森林生态系统的固碳能力。  相似文献   

18.
吉林省森林植被固碳现状与速率   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对吉林省森林植被的普遍调查、典型调查以及植被样品含碳率测定, 结合吉林省2009年和2014年森林清查数据, 估算了区域森林植被的碳储量、碳密度及固碳速率。研究结果表明: 林下植被的生物量在不同林分和同类林分中存在较大的差异, 整体不足乔木层生物量的3%, 灌木植物的生物量略高于草本植物和幼树。不同林分类型的乔木含碳率介于45.80%-52.97%之间, 整体表现为针叶林高于阔叶林; 灌木和草本植物分别为39.79%-47.25%和40%左右。吉林省森林植被碳转换系数以0.47或0.48更为准确, 若以0.50或0.45作为植被的碳转换系数计算碳储量, 会造成±5.26%的偏差。吉林省森林植被不仅维持着较高的碳库水平, 而且极具碳汇能力; 2009年和2014年碳储量分别为471.29 Tg C和505.76 Tg C, 累计碳增量34.47 Tg C, 平均每年碳增量6.89 Tg C·a-1; 碳密度由64.58 t·hm-2增至66.68 t·hm-2, 平均增加2.10 t·hm-2, 固碳速率0.92 t·hm-2·a-1。森林植被碳储量的增长主体是蒙古栎(Quercus mongolica)林和阔叶混交林, 合计碳增量占总体的90.34%。受植被发育引起的生物量增长、林分龄组晋级以及森林经营所引起的面积变化影响, 各龄组植被碳增量为幼龄林>过熟林>近熟林>中龄林, 成熟林表现为负增长; 固碳速率为过熟林>幼龄林>近熟林>中龄林>成熟林。森林植被碳储量和碳密度的市/区分布整体表现为自东向西明显的降低变化; 碳增量以东北和中东部地区较高, 西部地区较低; 固碳速率整体以南部的通化地区和白山地区相对较高, 中部的吉林地区和东部的延边地区次之, 西部的白城地区、松原地区等地呈负增长。  相似文献   

19.
《植物生态学报》2016,40(4):341
Aims
Forests represent the most important component of the terrestrial biological carbon pool and play an important role in the global carbon cycle. The regional scale estimation of carbon budgets of forest ecosystems, however, have high uncertainties because of the different data sources, estimation methods and so on. Our objective was to accurately estimate the carbon storage, density and sequestration rate in forest vegetation in Jilin Province of China, in order to understand the role of the carbon sink and to better manage forest ecosystems.
Methods
Vegetation survey data were used to determine forest distribution, size of area and vegetation types regionally. In our study, 561 plots were investigated to build volume-biomass models; 288 plots of shrubs and herbs were harvested to calculate the biomass of understory vegetation, and samples of trees, shrubs and herbs were collected to analyze carbon content. Carbon storage, density and sequestration rate were estimated by two forest inventory data (2009 and 2014), combined with volume-biomass models, the average biomass of understory vegetation and carbon content of vegetation. Finally, the distribution patterns of carbon pools were presented using ArcGIS soft ware.
Important findings
Understory vegetation biomass overall was less than 3% of the tree layer biomass, varying greatly among different forest types and even among the similar types. The carbon content of trees was between 45.80%-52.97%, and that of the coniferous forests was higher than that of the broadleaf forests. The carbon content of shrub and herb layers was about 39.79%-47.25% and 40%, respectively. Therefore, the vegetation carbon conversion coefficient was 0.47 or 0.48 in Jilin Province, and the conventional use of 0.50 or 0.45 would cause deviation of ±5.26%. The vegetation carbon pool of Jilin Province was at the upper range of regional carbon pool and had higher capacity of carbon sequestration. The value in 2009 and 2014 was 471.29 Tg C and 505.76 Tg C, respectively, and the total increase was 34.47 Tg C with average annual growth of 6.89 Tg C·a-1. The corresponding carbon sequestration rate was 0.92 t·hm-2·a-1. The carbon density rose from 64.58 t·hm-2 in 2009 to 66.68 t·hm-2 in 2014, with an average increase of 2.10 t·hm-2. In addition, the carbon storage of the Quercus mongolica forests and broadleaved mixed forests, accounted for 90.34% of that of all forests. The carbon increment followed the order of young > over-mature > near mature > middle-aged > mature forests. The carbon sequestration rate of followed the order of over-mature > young > near mature > middle-aged > mature forests. Both the carbon increment and the carbon sequestration rate of mature forests were negative. Furthermore, spatially the carbon storage and density were higher in the east than in the west of Jilin province, while the carbon increment was higher in northeast and middle east than in the west. The carbon sequestration rate was higher in Tonghua and Baishan in the south, followed by Jinlin in the middle and Yanbian in the east, while Baicheng and Songyuan, etc. in west showed negative values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号