首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Objective

Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM).

Theory

NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.

Methods

To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches – Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.

Results

The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.  相似文献   

2.

Purpose

The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI).

Materials and methods

The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients).

Results

The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05).

Conclusion

The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.  相似文献   

3.
目的:研究扩散峰度成像(DKI)参数与脊髓型颈椎病(CSM)患者神经功能评分的相关性及临床意义。方法:选取2018年12月至2019年6月本院收治的CSM患者37例作为研究组及健康志愿者的30例作为对照组,采用GE3.0磁共振机分别对两组人员行磁共振成像(MRI)及DKI扫描,观察其影像学特征及DKI参数的变化情况,并分析DKI参数值与临床行为评分的相关性。结果:所有研究对象的MRI图像均符合诊断要求。志愿者颈髓形态完整、信号均匀;不同年龄组颈髓平均弥散各向异性分数(FA)值、平均弥散峰度(MK)值比较差异无统计学意义(P>0.05)。根据MRI的T2加权图像上椎管受压程度及脊髓信号改变,将实验组分为A、B、C组,对照组与各实验组的MK值、FA值比较差异有统计学意义(P<0.05)。实验组FA值与mJOA评分呈显著正相关(r=0.34),与NDI评分呈负相关(r=-0.38);MK值与mJOA评分呈正相关(r=0.67),与NDI评分呈负相关(r=-0.46)。结论:DKI序列对CSM诊断具有参考较高价值,其参数与临床行为评分关系密切,能够评估早期CSM患者的脊髓损伤情况,并为诊断和治疗提供参考。  相似文献   

4.
Fluoroscopic images exhibit severe signal-dependent quantum noise, due to the reduced X-ray dose involved in image formation, that is generally modelled as Poisson-distributed. However, image gray-level transformations, commonly applied by fluoroscopic device to enhance contrast, modify the noise statistics and the relationship between image noise variance and expected pixel intensity. Image denoising is essential to improve quality of fluoroscopic images and their clinical information content. Simple average filters are commonly employed in real-time processing, but they tend to blur edges and details. An extensive comparison of advanced denoising algorithms specifically designed for both signal-dependent noise (AAS, BM3Dc, HHM, TLS) and independent additive noise (AV, BM3D, K-SVD) was presented. Simulated test images degraded by various levels of Poisson quantum noise and real clinical fluoroscopic images were considered. Typical gray-level transformations (e.g. white compression) were also applied in order to evaluate their effect on the denoising algorithms. Performances of the algorithms were evaluated in terms of peak-signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square error (MSE), structural similarity index (SSIM) and computational time. On average, the filters designed for signal-dependent noise provided better image restorations than those assuming additive white Gaussian noise (AWGN). Collaborative denoising strategy was found to be the most effective in denoising of both simulated and real data, also in the presence of image gray-level transformations. White compression, by inherently reducing the greater noise variance of brighter pixels, appeared to support denoising algorithms in performing more effectively.  相似文献   

5.
Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume effect, and a limited spatial and angular resolution. The difficulty lies in the lack of a realistic brain phantom on the one hand, and a sufficiently accurate way of modeling the acquisition-related degradation on the other. This paper proposes a software phantom that approximates a human brain to a high degree of realism and that can incorporate complex brain-like structural features. We refer to it as a Diffusion BRAIN (D-BRAIN) phantom. Also, we propose an accurate model of a (DW) MRI acquisition protocol to allow for validation of methods in realistic conditions with data imperfections. The phantom model simulates anatomical and diffusion properties for multiple brain tissue components, and can serve as a ground-truth to evaluate FT algorithms, among others. The simulation of the acquisition process allows one to include noise, partial volume effects, and limited spatial and angular resolution in the images. In this way, the effect of image artifacts on, for instance, fiber tractography can be investigated with great detail. The proposed framework enables reliable and quantitative evaluation of DW-MR image processing and FT algorithms at the level of large-scale WM structures. The effect of noise levels and other data characteristics on cortico-cortical connectivity and tractography-based grey matter parcellation can be investigated as well.  相似文献   

6.
Diffusion kurtosis imaging (DKI) is a promising extension of diffusion tensor imaging, giving new insights into the white matter microstructure and providing new biomarkers. Given the rapidly increasing number of studies, DKI has a potential to establish itself as a valuable tool in brain diagnostics. However, to become a routine procedure, DKI still needs to be improved in terms of robustness, reliability, and reproducibility. As it requires acquisitions at higher diffusion weightings, results are more affected by noise than in diffusion tensor imaging. The lack of standard procedures for post-processing, especially for noise correction, might become a significant obstacle for the use of DKI in clinical routine limiting its application. We considered two noise correction schemes accounting for the noise properties of multichannel phased-array coils, in order to improve the data quality at signal-to-noise ratio (SNR) typical for DKI. The SNR dependence of estimated DKI metrics such as mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) is investigated for these noise correction approaches in Monte Carlo simulations and in in vivo human studies. The intra-subject reproducibility is investigated in a single subject study by varying the SNR level and SNR spatial distribution. Then the impact of the noise correction on inter-subject variability is evaluated in a homogeneous sample of 25 healthy volunteers. Results show a strong impact of noise correction on the MK estimate, while the estimation of FA and MD was affected to a lesser extent. Both intra- and inter-subject SNR-related variability of the MK estimate is considerably reduced after correction for the noise bias, providing more accurate and reproducible measures. In this work, we have proposed a straightforward method that improves accuracy of DKI metrics. This should contribute to standardization of DKI applications in clinical studies making valuable inferences in group analysis and longitudinal studies.  相似文献   

7.
This paper discusses the suitability, in terms of noise reduction, of various methods which can be applied to an image type often used in radiation therapy: the portal image. Among these methods, the analysis focuses on those operating in the wavelet domain. Wavelet-based methods tested on natural images – such as the thresholding of the wavelet coefficients, the minimization of the Stein unbiased risk estimator on a linear expansion of thresholds (SURE-LET), and the Bayes least-squares method using as a prior a Gaussian scale mixture (BLS-GSM method) – are compared with other methods that operate on the image domain – an adaptive Wiener filter and a nonlocal mean filter (NLM). For the assessment of the performance, the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the Pearson correlation coefficient, and the Spearman rank correlation (ρ) coefficient are used. The performance of the wavelet filters and the NLM method are similar, but wavelet filters outperform the Wiener filter in terms of portal image denoising. It is shown how BLS-GSM and NLM filters produce the smoothest image, while keeping soft-tissue and bone contrast. As for the computational cost, filters using a decimated wavelet transform (decimated thresholding and SURE-LET) turn out to be the most efficient, with calculation times around 1 s.  相似文献   

8.
Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated to find similar patches as training groups for further processing. Tensor-based PCA is used to obtain transformation matrices, and coefficients are sequentially shrunk by the linear minimum mean square error. Reconstructed patches are obtained, and a denoised image is finally achieved by aggregating all of these patches. The experimental results of the standard test image show that the best results are obtained with two denoising rounds according to six quantitative measures. For the experiment on the clinical images, the proposed AT-PCA method can suppress the noise, enhance the edge, and improve the image quality more effectively than NLM and KSVD denoising methods.  相似文献   

9.
Early marker-based metagenomic studies were performed without properly accounting for the effects of noise (sequencing errors, PCR single-base errors, and PCR chimeras). Denoising algorithms have been developed, but they were validated using data derived from mock communities, in which the true sequences were known. Since the algorithms were designed to be used in real community studies, it is important to evaluate the results in such cases. With this goal in mind, we processed a real 16S rRNA metagenomic dataset through five denoising pipelines. By reconstituting the sequence reads at each stage of the pipelines, we determined how the reads were being altered. In one denoising pipeline, AmpliconNoise, we found that the algorithm that was designed to remove pyrosequencing errors changed the reads in a manner inconsistent with the known spectrum of these errors, until one of the parameters was increased substantially from its default value. Additionally, because the longest read was picked as the representative for each cluster, sequences were added to the 3′ ends of shorter reads that were often dissimilar from what had been removed by the truncations of the previous filtering step. In QIIME, the denoising algorithm caused a much larger number of changes to the reads unless the parameters were changed from their defaults. The denoising pipeline in mothur avoided some of these negative side-effects because of its strict default filtering criteria, but these criteria also greatly limited the sequence information produced at the end of the pipeline. We recommend that those using these denoising pipelines be cognizant of these issues and examine how their reads are being transformed by the denoising process as a component of their analysis.  相似文献   

10.
PurposeNon-local means (NLM) based reconstruction method is a promising algorithm for few-view computed tomography (CT) reconstruction, but often suffers from over-smoothed image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (ART-RIANLM) is proposed.MethodsThe method consists of four steps: 1) Initializing parameters; 2) ART reconstruction using raw data; 3) Positivity constraint of the reconstructed image; 4) Image updating by RIANLM filtering. In RIANLM, two kinds of rotational invariance measures which are average gradient (AG) and region homogeneity (RH) are proposed to calculate the distance between two patches and a novel NLM filter is developed to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it is constant in NLM during the whole reconstruction process. The proposed method is validated on two digital phantoms and real projection data.ResultsIn our experiments, the searching neighborhood size is set as 15 × 15 and the similarity window is set as 3 × 3. For the simulated case of Shepp-Logan phantom, ART-RIANLM produces higher SNR (36.23 dB > 24.00 dB) and lower MAE (0.0006 < 0.0024) reconstructed images than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and recover image edges better. The result of real data case is also consistent with the simulation result.ConclusionsA RIANLM based reconstruction method for few-view CT is presented. Compared to the traditional ART-NLM method, SNR and MAE from ART-RIANLM increases 51% and decreases 75%, respectively.  相似文献   

11.
In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience.  相似文献   

12.
Liu H  Wang S  Gao F  Tian Y  Chen W  Hu Z  Shi P 《PloS one》2012,7(3):e32224
In Positron Emission Tomography (PET), an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.  相似文献   

13.
目的:验证肾脏扩散峰度成像(DKI)的可行性,并明确年龄因素对肾脏水分子扩散特性是否存在影响。方法:用3.0T磁共振扫描仪对年龄范围在20-60岁之间的41名健康志愿者进行磁共振DKI扫描。按年龄因素分四组(20-29岁)、(30-39岁)、(40-49岁)、(50-59岁),行t-test及方差分析及比较不同年龄因素对肾皮质和髓质的分数各向异性(FA)值、平均扩散(MD)值、峰度各向异性(FAK)值、平均峰度(MK)值的影响并进行统计学分析。结果:正常肾皮质的FA值、FAK值、MK值(0.327±0.047,0.325±0.088,0.688±0.087)显著低于髓质(0.389±0.062,0.396±0.091,0.802±0.124);而正常肾皮质MD值(1.633±0.157)显著高于髓质(1.588±0.162)。不同年龄段之间的FA、MD、FAK、MK值均无统计学差异(P0.05);左、右肾之间的比较无统计学差异(P0.05)。结论:正常肾脏DKI良好的揭示了肾皮质与髓质的水分子扩散特性;年龄因素对肾脏水分子扩散特性没有影响。  相似文献   

14.
The purpose of this study was to develop a novel dynamic deformable thorax phantom for deformable image registration (DIR) quality assurance (QA) and to verify as a tool for commissioning and DIR QA.The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges. To evaluate the physical characteristics of the phantom, we evaluated its image quality and deformation. DIR accuracies were evaluated using the three types of commercially DIR software (MIM, RayStation, and Velocity AI) to test the feasibility of this phantom. We used different DIR parameters to test the impact of parameters on DIR accuracy in various phantom settings. To evaluate DIR accuracy, a target registration error (TRE) was calculated using the anatomical landmark points.The three locations (i.e., distal, middle, and proximal positions) had different displacement amounts. This result indicated that the inner phantom was not moved but deformed. In cases with different phantom settings and marker settings, the ranges of the average TRE were 0.63–15.60 mm (MIM). In cases with different DIR parameters settings, the ranges of the average TRE were as follows: 0.73–7.10 mm (MIM), 8.25–8.66 mm (RayStation), and 8.26–8.43 mm (Velocity). These results suggest that our phantom could evaluate the detailed DIR behaviors with TRE. Therefore, this is indicative of the potential usefulness of our phantom in DIR commissioning and QA.  相似文献   

15.
PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR.  相似文献   

16.
Modern diffusion MR protocols allow one to acquire the multi-shell diffusion data with high diffusion weightings in a clinically feasible time. In the present work we assessed three diffusion approaches based on diffusion and kurtosis tensor imaging (DTI, DKI), and neurite orientation dispersion and density imaging (NODDI) as possible biomarkers for human brain glioma grade differentiation based on the one diffusion protocol. We used three diffusion weightings (so called b-values) equal to 0, 1000, and 2500 s/mm2 with 60 non-coplanar diffusion directions in the case of non-zero b-values. The patient groups of the glioma grades II, III, and IV consist of 8 subjects per group. We found that DKI, and NODDI scalar metrics can be effectively used as glioma grade biomarkers with a significant difference (p < 0.05) for grading between low- and high-grade gliomas, in particular, for glioma II versus glioma III grades, and glioma III versus glioma IV grades. The use of mean/axial kurtosis and intra-axonal fraction/orientation dispersion index metrics allowed us to obtain the most feasible and reliable differentiation criteria. For example, in the case of glioma grades II, III, and IV the mean kurtosis is equal to 0.31, 0.51, and 0.90, and the orientation dispersion index is equal to 0.14, 0.30, and 0.59, respectively. The limitations and perspectives of the biophysical diffusion models based on intra-/extra-axonal compartmentalisation for glioma differentiation are discussed.  相似文献   

17.
ObjectiveTo explore the parametric characteristics of diffusional kurtosis imaging (DKI) in the brain development of healthy preterm infants.ResultsMK and FA values were positively correlated with PMA in most selected WM regions, such as the posterior limbs of the internal capsule (PLIC) and the splenium of the corpus callosum (SCC). The positive correlation between MK value and PMA in the deep GM region was higher than that between FA and PMA. The MK value gradually decreased from the PLIC to the cerebral lobe. In addition, DKI parameters exhibited subtle differences in the parietal WM between the preterm and term control groups.ConclusionsMK may serve as a more reliable imaging marker of the normal myelination process and provide a more robust characterization of deep GM maturation.  相似文献   

18.
In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction.  相似文献   

19.
Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1–14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14–19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS.  相似文献   

20.
Real‐time monitoring of the thermal penetration depth (TPD) is essential in various clinical procedures, such as Laser Interstitial Thermal Therapy (LITT). MRI is commonly used to this end, though bulky and expensive. In this paper, we present an alternative novel method for an optical feedback system based on changes in the diffused reflection from the tissue during treatment. Monte‐Carlo simulation was used to deduce the relations between the backscattered pattern and the TPD. Several methods of image analysis are developed for TPD estimation. Each yields a set of parameters which are linearly dependent on the TPD. In order to test these experimentally, tissue samples were monitored in‐vitro during treatment at multiple wavelengths. The SNR and coefficient of determination were used to compare the various methods and wavelengths and to determine the preferred method. Such system and algorithms may be used for real‐time in‐vivo control during laser thermotherapy and other clinical procedures. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号