首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
D. J. Morré 《Protoplasma》1994,180(1-2):3-13
Summary Physical membrane displacement is a process common to all forms of vesicle budding as well as cell enlargement and pleomorphic shape changes. Cell-free reconstitution of membrane budding has been achieved with transitional endoplasmic reticulum fractions from both plants and animals where 50 to 70 nm transition vesicles have been observed to bud from the part-rough, part-smooth membrane elements that define transitional endoplasmic reticulum. This budding phenomenon requires ATP, is facilitated by cytosol and guanine nucleotides, and is both time- and temperature-dependent. The transitional endoplasmic reticulum buds that form when concentrated by preparative free-flow electrophoresis will attach specifically to cis Golgi apparatus membranes immobilized on nitrocellulose as an acceptor compartment. Golgi apparatus membranes derived from the trans compartment do not serve as an efficient acceptor compartment. Transfer of the vesicles once formed is rapid, nearly complete and no longer dependent upon added ATP. Transfer shows a strict temperature dependency corresponding to that of the intact cell where at temperatures of 16°C or below, vesicles form but do not attach to cis Golgi whereas at temperatures of greater than 16°C, vesicles both form and fuse. The principle ATPase of transitional endoplasmic reticulum which may be involved in the budding process has been identified, characterized and isolated. A 38 kDa cis Golgi apparatus associated protein also has been identified as a potential candidate as a docking protein. Transfer between trans Golgi apparatus and the plasma membrane also has been studied by cell-free analysis. Here, transfer has been found to be stimulated by NADH or NADH plus ascorbate. The role of NADH is unknown but the ability of plant and Golgi apparatus to oxidize NADH is inhibited by brefeldin A, a compound known to block membrane trafficking even at the level of the trans Golgi network. NADH oxidase activity of plasma membranes also has been described and is inhibited as well by brefeldin. Recent observations suggest that brefeldin A may block both the formation of vesicles at the trans Golgi apparatus as well as auxin hormone-stimulated cell elongation in plants. This once again raises the possibility of whether or not plant cell elongation is obligatorily mediated by membrane input from the Golgi apparatus. The latter seems unlikely based on two additional lines of evidence. The first is that auxin-induced cell elongation in plants shows no sharp temperature transition over the range of 4 to 24°C, whereas production of secretory vesicles from the trans Golgi apparatus appears to be largely prevented at temperatures of 18°C or less. Secondly, the sodium selective ionophore, monensin, which effectively blocks the formation of functional secretory vesicles at the trans Golgi apparatus, is also largely without effect on auxin-induced cell elongation for periods of 4 h or longer. Taken together the findings suggest that the action of brefeldin A on vesicle budding at the Golgi apparatus and cell enlargement, are not directly correlated but may represent a common action of the drug on some constituent essential to membrane displacement mechanisms.Abbreviations BFA brefeldin A - IAA indole-3-acetic acid; 2, 4-D 2, 4-dichlorophenoxyacetic acid - NSF N-ethylmaleimide-sensitive factor Much of the information summarized in this report was presented as a plenary lecture at the XV International Botanical Congress Tokyo, Yokohama, Japan, August 28–September 3, 1993.  相似文献   

2.
Summary Growing pollen tubes of tobacco germinated in suspension culture, were labelled with [3H]leucine and after varying times of chase with unlabelled leucine at 23, 16, or 4°C, were separated into plasma membrane-enriched and plasma membrane-depleted fractions by aqueous two-phase partition. At 23°C, the specific radioactivity of the plasma membrane increased with time to a maximum at 60 min. At 16°C and 4°C, labelling of the plasma membrane was respectively 40% and 10% that at 23°C. However, if labelling was at 23°C and subsequent transfer was at 4°C, plasma membrane labelling was much less affected and labelling of the plasma membrane was 60% that at 23°C. Additionally, quantitation of various morphological parameters revealed no accumulations of 50–70 nm transition vesicles in the space between endoplasmic reticulum and cis Golgi apparatus that might suggest formation of a low temperature compartment similar to those described for mammalian cells and tissues. Similarly, growth of pollen tubes was reduced but not blocked even at temperatures of 12°C. The results suggest that tube elongation is accompanied by a steady state flow of membranes to the cell surface that is relatively insensitive to interruption by low temperatures. Whereas leucine incorporation is reduced by low temperature even at 16°C, the flow pathway to the cell surface, including the endoplasmic reticulum to Golgi apparatus transfer step, as well as elongation growth does not exhibit a pronounced low temperature block in this tip growing system.  相似文献   

3.
In many systems transfer between the endoplasmic reticulum and the Golgi apparatus is blocked at temperatures below 16 degrees C. In virus-infected cells in culture, a special membrane compartment is seen to accumulate. Our studies with rat liver show a similar response to temperature both in situ with slices and in vitro with isolated transitional endoplasmic reticulum fractions. With isolated transitional endoplasmic reticulum fractions, when incubated in the presence of nucleoside triphosphate and a cytosol fraction, temperature dependent formation of vesicles occurred with a Q10 of approximately 2 but was apparent only at temperatures greater than 12 degrees C. A similar response was seen in situ at 12 degrees C and 16 degrees C where fusion of transition vesicles with cis Golgi apparatus, but not their formation, was blocked and transition vesicles accumulated in large numbers. At 18 degrees C and below and especially at 8 degrees C and 12 degrees C, the cells responded by accumulating smooth tubular transitional membranes near the cis Golgi apparatus face. With cells and tissue slices at 20 degrees C neither transition vesicles nor the smooth tubular elements accumulated. Those transition vesicles which formed at 37 degrees C were of a greater diameter than those formed at 4 degrees C both in situ and in vitro. The findings show parallel responses between the temperature dependency of transition vesicle formation in vitro and in situ and suggest that a subpopulation of the transitional endoplasmic reticulum may be morphologically and functionally homologous to the 16 degrees C compartment observed in virally-infected cell lines grown at low temperatures.  相似文献   

4.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

5.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

6.
Summary Golgi apparatus in subapical regions of hyphae consist of paranuclear dictyosomes with 4–5 cisternae each. Transverse and tangential sections provide ultrastructural evidence for a three-dimensional architectural model of the Golgi apparatus and a stepwise mechanism for dictyosome multiplication. The dictyosomes are polarized, with progressive morphological and developmental differentiation of cisternae from the cis to the trans pole. Small membrane blebs and transition vesicles provide developmental continuity between the nuclear envelope and the adjacent dictyosome cisterna at the cis face. Cisternae are formed as fenestrated plates with extended tubular peripheries. The morphology of each cisterna depends on its position in the stack, consistent with a developmental gradient of progressive maturation and turnover of cisternae. Mature cisternae at the trans face are dissociated to produce spheroid and tubular vesicles. Evidence in support of a schematic sequence for increasing the numbers of dictyosomes comes from images of distinctive and unusual forms of Golgi apparatus in hyphal regions where nuclei and dictyosomes multiply, as follows: (a) The area of the nuclear envelope exhibiting forming-face activity next to a dictyosome expands, which in turn increases the size of cisternae subsequently assembled at the cis face of the dictyosome. (b) As subsequent large cisternae are formed and mature as they pass through the dictyosome, an entire dictyosome about twice normal size is built up. The number of cisternae per stack remains the same because of continuing turnover and loss of cisternae at the trans face, (c) This enlarged dictyosome becomes separated into two by a small region of the nuclear envelope next to the cis face that acquires polyribosomes and no longer generates transition vesicles, (d) As a consequence, assembly of new dictyosomes is physically separated into two adjacent regions, (e) As.the enlarged cisternae are lost to vesiculation at the trans pole, they are replaced by two separate stacks of cisternae with typical normal diameters, (f) The net result is two adjacent dictyosomes where one existed previously. Dictyosome multiplication is thus accomplished as part of the normal developmental turnover of cisternae, without interrupting the functioning of the Golgi apparatus as it continues to produce new secretory vesicles from mature cisternae at the trans face. Coordination of Golgi apparatus multiplication with nuclear division ensures that each daughter nucleus receives a complement of paranuclear dictyosomes.  相似文献   

7.
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.  相似文献   

8.
The tridimensional structure of the Golgi apparatus has been studied in the absorptive cells of the mouse colon by means of reduced osmium postfixation and phosphatase cytochemistry. In thick sections of tissue impregnated with osmium tetroxide or treated with a technique to demonstrate TPPase activity, the Golgi formed a continuous ribbon-like structure capping the upper pole of the nucleus. Along the longitudinal axis of this ribbon, compact zones made up of superposed flattened saccules alternated with less compact zones which consisted of highly perforated saccules or bridging anastomosed tubules. In the cis-trans axis, the following elements were observed: (1) a cis element consisting of a continuous osmiophilic tubular network; (2) two or three subjacent elements selectively perforated by wells; (3) a trans compartment made up of two or three TPPase-reactive sacculotubular elements, some showing a "peeling-off" configuration. In some regions, the first flattened saccule of this trans compartment displayed discrete ovoid dilatations, located in compact zones and containing a dense granulofibrillar material; in the subjacent elements this material was seen concentrated in nodular swellings, at the intersection of the meshes of anastomosed membranous tubules. 100-300 nm vesicles containing a similar dense granulofilamentous material were observed in the trans Golgi zone and interspersed in the supranuclear cytoplasm between the Golgi zone and the apical surface of the cell. Smaller vesicles 80-100 nm in diameter containing a fine dusty material were also seen in proximity. These morphological observations suggested that at least two kinds of material were segregated in the saccules of the trans compartment and packaged in vesicles of two class sizes that detached from the Golgi stack on its trans aspect.  相似文献   

9.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

10.
The molecular basis for temperature compartment formation was investigated using a cell-free system from rat liver. The donor was from liver slices prelabeled with [3H]acetate. Unlabeled Golgi apparatus membranes were immobilized on nitrocellulose as the acceptor. When transfer was determined as a function of temperature, a transition in transfer activity was observed at low temperatures (≤ 20°C) similar to that seen in vivo. The decrease in transfer efficiency correlated with a decrease in phosphatidylethanolamine and phosphatidylserine content of the transition vesicles formed. By adding lipid mixtures enriched in these lipids to the vesicles, their ability to fuse with the cis Golgi apparatus was reconstituted. These findings provide evidence for a role for lipids in low temperature compartment formation.  相似文献   

11.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

12.
Golgi apparatus of livers of rats receiving 60 mg/100 g body weight all-trans retinol (vitamin A) in olive oil responded by a reproducible and significant increase both in the number of cisternae per Golgi apparatus stack and in the number of transition vesicles of the cis Golgi apparatus face compared to rats receiving olive oil alone as determined by quantitation from electron micrographs. These vesicles were identified by a simple, non-clathrin coat, a uniform diameter of about 60 nm and a location primarily in association with cis Golgi apparatus elements. They were distinct from clathrin-coated vesicles of the trans Golgi apparatus face which was unaffected by vitamin A treatment. Transition vesicles may be involved in the transfer of membrane materials to the Golgi apparatus from endoplasmic reticulum.  相似文献   

13.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

14.
Summary Based on cell-free processing whereby membrane glycoproteins from one cell type were processed by enzymes located in Golgi apparatus from another cell type, J. Rothman and colleagues postulated that vesicles budding from one Golgi apparatus stack migrated to and fused with cisternal membranes of other Golgi apparatus stacks in the cell-free milieu. An extension of this hypothesis was that these same or similar vesicles were involved in the trafficking of membrane material from one cisterna to the next even in the same Golgi apparatus stack [W. G. Dunphy, J. E. Rothman: Compartmental organization of the Golgi stack. Cell 42: 13–21 (1985)]. A coated bud revealed by tannic acid-containing fixatives was the morphological entity associated with this intercompartment Golgi apparatus transfer. This report summarizes information from the author's laboratories that suggests that perhaps the majority of these coated buds, while associated with the Golgi apparatus, are not vesicles per se but rather coated ends of tubules. Golgi apparatus tubules have been postulated to permit interconnections among adjacent Golgi apparatus stacks but not to function in transport between contiguous cisternae of the same Golgi apparatus stack.In the interest of scientific discourse, reasoned and constructive replies to views expressed under New Ideas in Cell Biology will be considered for publication. In this case, the responsible editor, to be contacted by respondents, is E. Schnepf.  相似文献   

15.
In polarized exocrine cells, the Golgi apparatus is cup-shaped and its convex and concave surfaces are designated as cis and trans faces, functionally confronting the rough endoplasmic reticulum and the cell surface, respectively. To clarify the morphological characteristics of the Golgi apparatus in non-polarized endocrine cells, the investigators immunocytochemically examined its precise architecture in pituitary gonadotropes, especially in relation to the arrangement of the intracellular microtubule network. The Golgi apparatus in the gonadotropes was not cup-shaped but ball-shaped or spherical, and its outer and inner surfaces were the cis and trans faces, respectively. Centrioles were situated at the center of the Golgi apparatus, from which radiating microtubules isotropically extended to the cell periphery through the gaps in the spherical wall of the Golgi stack. The shape of the Golgi apparatus and the arrangement of microtubules demonstrated in the present study could explain the microtubule-dependent movements of tubulovesicular carriers and granules within the gonadotropes. Furthermore, the spherical shape of the Golgi apparatus possibly reflects the highly symmetrical arrangement of microtubule arrays, as well as the poor polarity in the cell surface of pituitary gonadotropes.  相似文献   

16.
The dynamic nature of the Golgi complex   总被引:30,自引:16,他引:14       下载免费PDF全文
The intracellular transport of newly synthesized G protein of vesicular stomatitis virus is blocked at 20 degrees C and this spanning membrane glycoprotein accumulates in the last Golgi compartment, the trans Golgi-network (TGN). Previous morphological evidence suggested that the TGN enlarged significantly under this condition. In the present study we have used stereological procedures to estimate the volume and surface area of the Golgi stack and the TGN of baby hamster kidney cells under different conditions. The results indicate that the increase in the size of the TGN at 20 degrees C is accompanied by a significant decrease in the surface area and volume of the preceding Golgi compartments. A similar effect is also seen in uninfected cells at 20 degrees C, as well as during normal (37 degrees C) infection with Semliki Forest virus. In the latter case, however, the decrease in the size of the Golgi stack and the increase in that of the TGN is not accompanied by inhibition of transport from the Golgi complex to the cell surface. The results indicate that the Golgi stack and the TGN are dynamic and interrelated structures that are capable of rapid alteration in total surface area in response to changes in the rates of membrane transport.  相似文献   

17.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

18.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

19.
Summary The morphology of the Golgi apparatus of Amoeba proteus can be influenced by substances inducing pinocytotic activity as well as by extreme temperatures. During the ingestion of a solution of 0.5% egg white the number of Golgi bodies decreases from 100% measured in control cells to 82% measured in cells showing induced pinocytosis. Simultaneously the ratio of the surface area of the cisternae at the proximal face to that of the vesicles at the distal face of single dictyosomes remains constant (1.74–1.72).The decrease and increase of the temperature of the culture medium to 4° C and 30° C respectively, causes the disappearance of most of the dictyosomes. After keeping the cells for 3–10 h at these temperatures the number of Golgi bodies was only 5–10% of the controls. A continued treatment with cold or warm culture medium leads to a partial reorganization of dictyosomes. After 15 h the number of Golgi bodies counted per cell returned to 57% at 4° C and 38% at 30° C. The ratio of the surface area of the Golgi cisternae to the surface area of the Golgi vesicles also alters under the influence of extreme temperatures. The values measured after treating the cells for 3 h, 4 h 10 h and 15 h at 4° C and 30° C amounted to 0.75, 0.85, 1.14 1.53 and 0.93, 0.38, 0.88, 1.60, respectively, compared to 1.72 of control amoebae.The different values of the ratio of the surface area of cisternae to that of vesicles indicate that there are strong morphological changes of single dictyosomes.  相似文献   

20.
Summary Endoplasmic reticulum-polyribosome-Golgi apparatus associations were a general feature of cells of suspension cultures of wild carrot (Daucus carota L.). Free polyribosomes occurred within the Golgi apparatus zone for all dictyosomes and with equal frequency at all levels within the stack including the most mature or trans face. When evaluated and quantified from electron micrographs, approximately 60% of the dictyosome profiles were characterized by a system of transition elements consisting of part smooth-part rough endoplasmic reticulum. These were encountered most frequently in the immediate vicinity of the immature, forming or cis face, usually toward the periphery of the stacked cisternae. Analysis of serial sections showed that those dictyosome profiles not exhibiting this characteristic did so primarily because of an unfavorable plane of sectioning. All dictyosomes examined in 5 or more serial sections revealed some type of close association with endoplasmic reticulum. Some of the associations were so close that direct connections between Golgi apparatus and endoplasmic reticulum tubules could not be excluded. Also present, especially at the forming or cis face, were small 600 nm transition vesicles with nap-like surface coats on nearly 90% of the dictyosomes examined. More than 50% exhibited spiny (clathrin-)coated vesicles at the mature or trans face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号