首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The 3-dimensional structure of the Golgi apparatus has been analyzed in thin and thick sections of nonciliated epithelial cells of ductuli efferentes of rat by use of low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of tissue impregnated with osmium, the Golgi apparatus appeared at low magnification as a continuous network forming a corona at the apical pole of the nucleus. At higher magnification and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following structural features were observed. In the longitudinal axis of the Golgi network there were alternating compact and noncompact zones. The compact zones were composed of 6-8 flattened, poorly fenestrated saccules in close apposition to each other and forming stacks. The noncompact zones were composed of a number of highly fenestrated and slightly distended saccules, which were continuous with and bridged the saccules of the compact zones. In the cis-trans axis of the Golgi apparatus the following compartments were observed: (a) On the cis face there was a continuous osmiophilic tubular network referred to as the cis element; (b) a cis compartment composed of 3 or 4 NADPase-positive saccules perforated with pores in register forming wells that contained small vesicles; (c) a trans compartment composed of 1 or 2 TPPAse-positive elements underlying the NADPase ones, followed by 1 or 2 CMPase-positive elements that showed a flattened saccular part continuous with a network of anastomotic tubules. These tubular networks curved away from the overlying elements, giving these elements a 'peeling-off" configuration. These elements referred to as sacculotubular elements were discontinuous along the Golgi network. This compartment also included shriveled trans-tubular networks detached from the overlying sacculotubular elements and seemingly undergoing fragmentation into vesicles and tubules. The structural features of the elements of the trans compartment were indicative of continuous renewal.  相似文献   

2.
The three-dimensional structure of the components of the Golgi apparatus was analyzed in plasma cells of rat duodenum. The spheroidal juxtanuclear Golgi apparatus was formed by a continuous ribbonlike structure composed of the following stacked elements. On the cis-face of the Golgi stack, there was a tubular membranous network referred to as the cis-element and/or a slightly dilated saccule perforated with small pores. The two or three subjacent saccules, which showed few pores, were slightly dilated and contained a fluffy granulofilamentous material. They were also perforated in register by cavities or wells containing 80-nm vesicles. The next one or two underlying elements were fenestrated saccules showing flattened portions as well as distended portions containing a homogeneous material denser than that seen in the overlying saccules. The last two or three elements of the stack showed a partially separated or "peeling off" configuration. These last elements consisted of prosecretory granules attached to flattened, empty-looking saccules showing buds at their surface; detached, more-or-less fenestrated, flattened saccules; and shrivelled residual trans-tubular networks. In the trans-region of the stack, in addition to numerous small vesicles, short membranous tubules, detached prosecretory granules, and denser fully formed secretion granules were also seen. These images were interpreted to indicate that secretory material present in the trans-saccules flows toward the dilated portions which become prosecretory granules. The trans-most elements seemingly peel off the stack to yield prosecretory granules and fragmenting trans-tubular networks.  相似文献   

3.
The formation of secretion granules has been studied in the Golgi apparatus of granular epithelial cells of frog urinary bladders maintained at room temperature or cooled at 4 degrees C for various lengths of time. In control animals, the Golgi apparatus was composed of the following stacked elements: subjacent to the cis-element made up of anastomosed tubules, two elements in the mid-compartment consisted of flattened saccules interconnected by tubules. On the trans-face, two or three sacculo-tubular elements were slightly dilated by an electron dense granular material. In the trans-Golgi elements, this material was segregated into dilatations of various sizes and shapes which are continuous with flattened portions devoid of stained material. In the trans-Golgi region, free irregular progranules, seemingly formed by rupture of the trans-most Golgi elements. In granular cells examined after 4 h at 4 degrees C, all Golgi compartments were affected by the low temperature. The cis-half portion of the Golgi apparatus consisted mainly of anastomosed membranous tubules and the cis-element was no longer recognizable. The trans-compartment was reduced to a few flattened saccules with progranules hardly visible on their trans-aspect. At later time intervals, there was a progressive reconstitution of the cis-zone while saccular elements started to pile up in the trans-compartment. At 24 h, the trans-compartment comprised six to eight saccular elements which showed irregular dilatations filled with granular material separated by large flattened portions. These various observations were interpreted as indicating that the trans-compartment was a dynamic structure undergoing continuous renewal.  相似文献   

4.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in sections of pancreatic acinar cells by using stereopairs of electron microscope photographs. Pancreatic tissue fixed in glutaraldehyde was postfixed in reduced osmium, and the sections were stained with lead citrate. Tissues were also treated to demonstrate phosphatase activity (i.e., nicotinamide adenine dinucleotide phosphatase, NADPase; thiamine pyrophosphatase, TPPase; cytidine monophosphatase, CMPase). The following stacked components were observed along the branching, anastomotic, continuous, ribbonlike Golgi apparatus. 1) On the cis-face of the Golgi stack there was a tubular membranous network known to be osmiophilic and referred to as the cis-osmiophilic tubular network or cis-element. 2) A first, poorly fenestrated saccule, unreactive for the phosphatases tested, was slightly distended in places and contained a fluffy granulofilamentous material. 3) The subjacent three or four saccules, reactive for NADPase and/or TPPase, showed dilated portions containing a granulofilamentous secretory material similar to that filling the rest of the saccule. They also showed nondilated portions perforated with large fenestrations, some of which were in register and formed wells containing 80-nm vesicles. The dilated portions of these saccules were present at random along the length of the saccules and were not located exclusively at their edges. 4) The remaining one or two elements of the stack, CMPase positive, showed dilated spheroidal portions or prosecretory granules containing a homogeneous secretory material and flattened fenestrated regions free of secretory material and having the appearance of networks of narrow membranous tubules. 5) Lastly on the trans-aspect of the stack there were detached prosecretory granules reactive for CMPase and surrounded by a corona of small vesicles, and smooth-surfaced spherical CMPase-negative granules having a denser content that were identified as fully formed secretion granules; there were also occasional free trans-tubular networks strongly reactive for CMPase that appeared to undergo fragmentation and numerous small vesicles free from acid-phosphatase activity. These various images were interpreted as indicating that prosecretory granules formed in relation to two or three fenestrated saccules on the trans-side of the stack. Such granules, following their detachment from the trans-face of the stack, their separation from trans-tubular networks, and condensation of their content, yielded mature secretion granules.  相似文献   

5.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

6.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in thin and thick sections of mucous cells of mouse Brunner's glands by using low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of glands impregnated with osmium or treated to detect nicotinamide adenine dinucleotide phosphatase (NADPase) or thiamine pyrophosphatase (TPPase) activity, the Golgi apparatus appeared, at low magnification, as a continuous network located in the supranuclear region. At higher magnifications and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following components were observed: on the cis-face of the Golgi stacks, an osmiophilic tubular network referred to as the cis-element; a cis-saccular-compartment composed of a distended porous saccule slightly reactive for NADPase and three or four underlying NADPase-positive, flattened, poorly fenestrated saccules; a trans-saccular-compartment consisting of four to six TPPase-positive saccules or sacculo-tubular elements, prosecretory granules, and "peeling off" trans-tubular networks. The saccules of the cis-compartment were often perforated by large pores in register. The cavities thus formed in the stacks were called wells and were pan-shaped with a mouth directed toward the cis-face of the stacks and a bottom closed by TPPase-positive saccules. The wells always contained 80-nm vesicles. The saccules of the trans-compartment were involved in the formation of secretory granules according to the following proposed sequence of transformation. The secretion product appeared initially as a granular material evenly distributed throughout a slightly distended, poorly fenestrated saccule. These saccules appeared to transform into fenestrated elements with irregular pores and with parts of them taking on the appearance of a tubular network; they were thus referred to as sacculotubular elements. The secretory material initially distributed throughout these elements accumulated in nodular dilatations randomly distributed along the tubular portions of the elements. The dilatations, considered as prosecretory granules, increased in size as they drained the secretory material from the rest of the sacculotubular elements. Such prosecretory granules, large and irregular in shape, "peeled off" from the stacks of saccules with residual saccular or tubular structures still attached to them, some of the latter forming trans-tubular networks. The prosecretory granules detached from such membranous residues, condensed, and finally transformed into spherical secretion granules.  相似文献   

7.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

8.
Glutaraldehyde-fixed testes were stained "en bloc" with the Ur-Pb-Cu technique of Thiéry and Rambourg ('76) or post-fixed and stained with the osmium tetroxide-potassium ferrocyanide method of Karnovsky ('71). Thin or thick (up to 3 micron) sections were examined with the Philips (301 or 400) EM or the high voltage EM. Stereopairs were prepared with photographs of tilted specimens (+/- 7 degrees). At low magnification, in thick sections (0.5-3 micron) stained with Ur-Pb-Cu, the whole Golgi apparatus formed a single network of interconnected wavy ribbon or platelike structures extending from the juxtanuclear region toward the apex of the cell. At higher magnifications, with the two staining techniques, this Golgi network showed two distinct types of regions: the "saccular region" corresponding to the conventional stack of saccules and the "intersaccular connecting region" made up of anastomotic tubules which bridge adjacent stacks. In the saccurlar regions, there was, on the cis-face of the stack, a tight polygonal meshwork of anastomotic tubules (osmiophilic element). Underlying it there were three to seven closely apposed saccules perforated with pores of various diameters, and finally, on the trans-face, a network of tubules was usually connected to the last saccule of the stack, which seemed to peel off" from the pile. The intersaccular connecting regions showed proximal and distal zones with regard to the associated stacks. The proximal zone was made up of superimposed and parallel polygonal networks of membranous tubules which were continuous with corresponding saccules of the stack. In the distal zone they interdigitated, intertwined, anastomosed and bridged adjacent saccular regions; others turned at right angles and established connections with tubular extensions arising at various levels of the same stack. While cisternae of endoplasmic reticulum were contiguous with tubules or saccules located on the transface of the Golgi apparatus, a close association between the ER cisternae and the cis-face of the stacks was not usually observed.  相似文献   

9.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

10.
 The Golgi apparatus of epididymal principal cells shares many structural features with other cell types. Saccular regions are arranged in a cis-Golgi network, eight flattened saccules, and several trans-Golgi networks (TGNs). Dilated tubules form intersaccular connecting regions which joint together saccules at the same or different levels between adjacent stacks. Wells exist as large perforations in register with the four cis-most saccules and serve as areas of vesicular interactions. TGNs are variable and can appear to peel off the stack or to be detached from it in the form of an anastomotic tubular network with pale dilated areas corresponding to prosecretory granules connected by short narrow bridges. Elongated or discoid dilated cisternae of endoplasmic reticulum (ER) (sparsely granulated) lie over the cis face of the stack, from which they are separated by an intermediate compartment filled with vesicles and tubules. The ER is also closely juxtaposed to the TGNs and the eighth saccule but interconnections are never seen between them. Vesicles of the COP variety reside at all levels of the stack and appear to bud off the cis-located ER and the edges of the saccules, while clathrin-coated vesicles appear mainly on the trans face of the stack and next to lysosomes. In the supranuclear cytoplasm, clusters of vesicles and tubules, at times budding off enveloping ER, appear to radiate toward the Golgi stacks where they fuse with cis Golgi elements. Taken together, these observations suggest dynamic functions and interactions for the various Golgi elements, associated vesicles, ER, and vesicular tubular clusters. Accepted: 29 January 1998  相似文献   

11.
The three-dimensional structure of the whole Golgi apparatus and of its components in type A ganglion cells was examined in thin and thick sections by low- and high-voltage electron microscopy. At low magnification, in 10-micron-thick sections of osmicated cells, the Golgi apparatus formed a broad, continuous perinuclear network. At higher magnification and in thinner sections of cells impregnated with uranyl acetate-lead-copper citrate or postfixed in K-ferrocyanide-reduced osmium, the Golgi apparatus appeared as a heterogeneous structure in which saccular regions characterized by stacks of saccules alternated with intersaccular regions made up of branching membranous tubules which bridged the saccules of adjacent stacks. The saccular regions consisted of the following superimposed elements: a cis-osmiophilic element made up of anastomosing tubules; two or three saccules negative for the phosphatases tested (i.e., nicotinamide adenine dinucleotide phosphatase = NADPase, thiamine pyrophosphatase = TPPase, and cytidine monophosphatase = CMPase); two saccules showing TPPase activity; and one to three trans-sacculotubular elements showing a "peeling-off" configuration, one of which showed CMPase activity. The saccules (phosphatase-negative) on the cis-side of the Golgi stacks showed, in addition to small circular pores, larger perforations in register. The cavities thus formed in the stacks of saccules, called "wells," always associated with small 80-nm vesicles, had a pan shape with the mouth directed toward the cis-face and the bottom closed by a TPPase-positive saccule. In face views of the saccules, the smallest of these perforations showed either a crescent shape, due to the presence of a bud on one side of the perforation, or a circular shape with a single small 80-nm vesicle in the center which was occasionally attached to the saccule by a filiform stalk. Such smaller cavities were considered as the precursors of the larger perforations and eventually of the wells. The small 80-nm vesicles seen in the small cavities or in the wells appeared to form in situ and possibly migrate toward the cisternae of endoplasmic reticulum seen proximal to the cis-face of the stack of saccules. Small 80-nm vesicles were also numerous in the intersaccular regions, along the lateral- and trans-aspects of the Golgi stacks, while larger, 150-to 300-nm vesicles, coated and uncoated, were seen only on the trans-face of the Golgi stacks in proximity to the trans-sacculotubular elements which appear to "peel off" from the Golgi stacks.  相似文献   

12.
Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Hearts of the Atlantic hagfish, Myxine glutinosa were studied with the electron microscope after prefixation in phosphate buffered glutaraldehyde or buffered formalin and subsequent postifxation in phosphate buffered osmium tetroxide. Epicardial, myocardial and endocardial layers are identified; however the hearts of Myxine lack an extensive capillary system comparable to the coronary vessels of other vertebrate heart tissues. Instead, blood is supplied to cells via an elaborate system of channels which extend between numerous trabeculae that make up the cardiac wall of this organism. Fine structural features of special interest include the presence of numerous dense granules (chromaffin granules) within myofibers and also specific granular cells which lack the contractile elements that are characteristic of both skeletal and cardiac myofibers. Another prominent feature noted includes an elaborate system of tubular invaginations within the subjacent sarcoplasm. These elements appear to be specific for the myofibers. They are continuous with the plasma membrane and project into the peripheral sarcoplasmic matrix. Crystalline inclusions are also observed in the sarcoplasm of the myofibers. These are compared with similar inclusions in other cellular components. The Golgi complex is very extensive in the myofibers of Myxine, and granules of varying sizes and densities often appear in the vicinity of the Golgi saccules. The observations suggest that the numerous vesicles around the Golgi Complex represent intermediate stages in the formation of the chromaffin granules. The structure and function of the extensive tubular invaginations are compared with the transverse tubules reported in several mammalian heart tissues.  相似文献   

14.
We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with [3H]sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography. The data demonstrate that dispersed fragments of the rat liver Golgi complex (i.e., unstacked vesicles and tubules) reconstitute into stacked saccules when microinjected into Xenopus cytoplasm. After the formation of stacked saccules, reconstituted Golgi fragments transport constituents into a portion of the exocytic pathway of the host cell by a microtubule-regulated process.  相似文献   

15.
The morphological effects of Brefeldin A (BFA) on the parotid acinar cells of a rat were investigated at the stage of active resynthesis of secretory materials following administration of the secretogogue, isoproterenol. Incubation with BFA resulted in: a) marked dilation of the rough endoplasmic reticulum (RER), b) involution of the Golgi complex to rudimentary forms which disseminated throughout the cytoplasm, and c) agenesis of secretion granules. It appears that the primary action of BFA is inhibition of the export of secretory materials from the RER toward the Golgi complexes. Histochemical staining indicated the thiamine pyrophosphatase (TPPase) positive saccules of the Golgi stack to undergo degradation in autophagic vacuoles. In contrast, small vesicles showing the osmium reducing activity characteristic of cis elements, including osmium negative vesicles, continued to be present throughout a 4-h period of investigation, indicating the cis and, most likely, medial elements to be the components of the rudimentary Golgi complexes. On removal of the drug, a large number of transport vesicles appeared immediately from the RER and carried secretory materials to the rudimentary Golgi complex, so that the organelles were rapidly reconstructed within 30-60 min, followed by the reaccumulation of secretory granules by 90 min. It is thus indicated that the size and configuration of the Golgi complex is regulated by a dynamic equilibrium of the transport of secretory materials, and that the rudimentary Golgi complex containing cis and probably medial elements may function as the smallest units of the Golgi complex for full development as seen under normal conditions.  相似文献   

16.
In the course of spermiogenesis in the mouse, spermatid cytoplasm contains numerous membrane pits, vesicles and membranous tubules which are frequently anastomosed. Pale and dense multivesicular bodies (MVB) and secondary lysosome-like structures are also present in the cytoplasm. In order to study the pathway of non-specific adsorptive endocytosis in spermatids, cationic ferritin (CF) was directly microinjected into the lumen of seminiferous tubules, and added to germinal cell culture. Tissue and cultures were fixed at various time intervals after injection. Two-5 hr after microinjection of tracer, CF was found simultaneously in vesicles, tubules, MVB and in lysosome-like bodies present in spermatids at all steps of spermiogenesis. Various membranous components of the Golgi medulla, and the innermost transsaccule of the Golgi cortex were labelled simultaneously. In primary cultures of spermatids, the vesicles contained the marker 5 min after its deposition; 10 min after deposition, CF was evident in tubules; at 30 min, CF was present in pale MVB; at 1 hr, the dense MVB and lysosome-like bodies were labelled. Finally, at 2 hr 30 min, vesicles and tubules of the Golgi medulla contained CF grains. Apparently spermatids are very active cells in the process of adsorptive endocytosis throughout spermiogenesis. Endocytosis in spermatids is probably one of the mechanisms involved in the uptake of material used to build up spermatozoa components. The strong labelling of the Golgi region probably point to its role in recycling endocytosed membranes.  相似文献   

17.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

18.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

19.
《The Journal of cell biology》1994,125(5):997-1013
Human autoantibodies offer unique tools for the study of cellular constituents since they usually recognize highly conserved components, the most difficult to detect due to their low immunogenicity. The serum from a patient with Sjogren's syndrome (RM serum) showing a very high reactivity to the Golgi complex has been shown to immunoprecipitate and to immunodetect by Western blotting experiments a protein mol wt 210,000 (p210) that was shown to be peripheral and cytoplasmically disposed. A close examination of the p210 labeling revealed some differences with Golgi markers: RM serum staining was slightly more extensive than several Golgi markers and showed a discontinuous or granular appearance. Nocodazole induced a specific and early segregation of many p210-associated vesicles or tubules from Golgi apparatus. Upon brefeldin A treatment, p210 did not redistribute in the ER as did other Golgi proteins. In contrast, it exhibited a vesicular pattern reminiscent to that displayed by proteins residing in the intermediate compartment. Double staining immunofluorescence using the RM serum and the marker of the intermediate compartment, p58, revealed segregation of both proteins in control conditions but colocalization in BFA-treated cells. We have further demonstrated by combining different drug treatments that p210-containing elements in brefeldin A- treated cells belong indeed to the intermediate compartment. Experiments on brefeldin A recovery suggested that these p210 elements might play a role in reformation and repositioning of the Golgi apparatus. Ultrastructural localization performed by immunoperoxidase staining allowed us to establish that p210 interacted with the external side of an abundant tubulo-vesicular system on the cis side of the Golgi complex which extended to connecting structures and vesicles between saccules or stacks of cisternae, p210 appears to be a novel protein residing in the cis-Golgi network that may cycle between the Golgi apparatus and the intermediate compartment.  相似文献   

20.
Fine structure and stereo-images of the Golgi apparatus and endoplasmic reticulum (ER) in the subcommissural organ (SCO) cells were visualized by the application of zinc-iodide osmium tetroxide (ZIO) impregnation, conventional electron microscopy and high voltage electron microscopy (HVEM). The Golgi apparatus in the SCO cells of rats, gerbils and hamsters consisted of flattened saccules stacked in parallel array. It showed a selective staining toward ZIO mixture and might form a complex network of tubular structures because of the presence of numerous fenestrations in the flattened Golgi saccules. The cytoplasm of the SCO cells in the rat and gerbil was crowded by dilated cisternae of the ER with a few flattened profiles. In the hamster SCO cells, however, the dilated cisternae of the ER were not observed. Flattened cisternae of ER in all species studied showed a positivity for ZIO impregnation and formed a complex tubular network, whereas dilated cisternae of the ER in the rats and gerbils did not show any reactivity. It was thus determined that the observation of thin and thick sections selectively stained with appropriate reagent for defined cellular organelles under conventional electron microscopy and HVEM offered valuable information about three-dimensional organization of the cell. A definite species-specific variation of SCO ultrastructure and cytochemistry was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号