首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The complete CDS sequences of three porcine genes: UCHL3, RIT1 and CCND3 were amplified using RT-PCR based on the sequence information of the mouse or other mammals and referenced highly homologous pig ESTs. Sequence analysis of these three genes revealed that the porcine UCHL3 gene encodes a protein of 230 amino acids and has high homology with the ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) of four species-bovine (97%), human (96%), mouse (95%) and rat (94%). The porcine RIT1 gene encodes a protein of 219 amino acids and has high homology with the GTP-binding protein Rit1 (RIT1) of two species-human (97%), mouse (97%). The porcine CCND3 gene encodes a protein of 292 amino acids and has high homology with the G1/S-specific cyclin-D3 (CCND3) of four species-bovine (98%), human (97%), mouse (93%) and rat (92%). The phylogenetic tree analysis revealed that the swine UCHL3 has a closer genetic relationship with the UCHL3 of bovine, and the swine RIT1 has closer genetic relationships with the RIT1 of human, but the swine CCND3 has a closer genetic relationship with the CCND3 of bovine. The RT-PCR gene expression analysis indicated that the swine UCHL3, RIT1 and CCND3 genes were differentially expressed in tissues including small intestine, large intestine, liver, muscle, fat, lung, spleen and kidney. Our experiment established the primary foundation for further research on these three swine genes.  相似文献   

2.
Two new mouse genes encoding proteins that belong to the yeast minichromosome maintenance (MCM) protein family, which is involved in the initiation of DNA replication, were isolated and their nucleotide sequence was determined. They were a putative CDC46/MCM5 homolog and a putative cdc21 homolog. About 30% amino acid identity was obtained between members in the family, and > 40% between the putative mouse and yeast homologs. The expression of these genes was cell-cycle specific at the late G1 to S phase. Immunochemical analyses showed the physical interaction between mouse P1MCM3 and CDC46 protein. These results suggest that MCM proteins function in co-ordination for DNA replication.  相似文献   

3.
4.
5.
6.
7.
Imprinted genes are expressed monoallelically depending on their parental origin, and play important roles in embryo survival and postnatal growth regulation. In this study, we characterized the porcine NECD (necdin), SNRPN (small nuclear ribonucleoprotein polypeptide N) and UBE3A (UBE3A ubiquitin protein ligase E3A) genes, analyzed their expression in nine tissues including liver, lung, small intestine, skeletal muscle, heart, kidney, spleen, inguinal lymph nodes and fat, and also examined their imprinting status in the skeletal muscle of neonate pigs. Results indicated that these three genes were highly homologous between pigs and cattle, being 95.02?% in nucleotide and 99.17?% in amino acid with the cattle SNRPN gene, and 96.46?% in nucleotide and 98.63?% in amino acid with the cattle UBE3A gene, respectively. The three genes were expressed in all the tissues investigated. Three single nucleotide polymorphisms (SNPs) in the coding region of these genes, i.e. g.263G>C, g.402T>C and g.340A>G for porcine NECD, SNRPN and UBE3A genes, respectively, were revealed; and imprinting analysis with which indicated that, in the skeletal muscle of neonate pigs, both NECD and SNRPN were maternally imprinted, while UBE3A was not imprinted.  相似文献   

8.
9.
10.
G Draetta  L Brizuela  J Potashkin  D Beach 《Cell》1987,50(2):319-325
cdc2+ and CDC28 play central roles in the cell division cycles of the widely divergent yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. The genes encode protein kinases that show 62% protein sequence identity and are capable of cross-complementation. Monoclonal antibodies were raised against p34cdc2, and a subset recognize p36cdc28. The cross-reacting antibodies detected a 34 kd homolog of the p34cdc2/p36CDC28, protein in HeLa cells. Human p34 was also recognized by an affinity-purified polyclonal anti-p34cdc2 serum. Peptide mapping of p34cdc2, p36CDC28, and human p34 revealed complete conservation of four tryptophan residues in the three proteins. p34 thus appears to be closely related to the two yeast proteins. In addition, a p34 immune complex showed protein kinase activity in vitro, and HeLa cell p34 interacts with p13, the human homolog of the suc1+ gene product of S. pombe.  相似文献   

11.
The CDC42Hs protein appears to be an isoform of the ras-related GTP-binding protein G25K and is an apparent human homolog of the Saccharomyces cerevisiae cell-division-cycle protein, CDC42Sc. In this study, we report the identification of a GTPase-activating protein (GAP) for CDC42Hs from human platelets (designated from here on as CDC42Hs-GAP). The CDC42Hs-GAP activity was solubilized from platelet membranes, recovered through successive chromatography steps (the final step being Mono-Q chromatography), and purified approximately 3500-fold. The CDC42Hs-GAP activity appeared to correspond to a polypeptide with an apparent Mr of approximately 25,000. The GTPase activities of the purified human platelet CDC42Hs, the Escherichia coli-recombinant CDC42Hs, and the Spodoptera frugiperda-recombinant GTP-binding proteins are all stimulated by the CDC42Hs-GAP to identical extents, which indicates that the recombinant CDC42Hs proteins are as effective as the native human platelet protein in coupling to the GAP. However, a mutant form of the E. coli-recombinant CDC42Hs which contains a valine residue at position 12 (CDC42HsVal-12) has a significantly reduced intrinsic GTPase activity (relative to the wild type CDC42HsGly-12) which is not stimulated by the CDC42Hs-GAP. The CDC42Hs-GAP also does not stimulate the GTPase activities of the ras or rap GTP-binding proteins; however, it is capable of a weak stimulation of the GTPase activity of mammalian rho. Based on the apparent similarities in the molecular size of the CDC42Hs- and rho-GAPs (i.e. 25-30 kDa), and the cross-reactivity of rho with the CDC42Hs-GAP, it seems likely that the CDC42Hs- and rho-GAPs will constitute a specific subclass of the ras-related GAP superfamily.  相似文献   

12.
G25K is a low-molecular-mass GTP-binding protein with a broad distribution in mammalian tissues. A cDNA clone was isolated by using oligonucleotides corresponding to the partial amino acid sequence of purified human G25K. The cDNA encodes an 191-amino-acid polypeptide containing GTP-binding consensus sequences and a putative farnesylation site at the C terminus. The sequence exhibits 50 and 70% identities to the mammalian rho and rac proteins, respectively, and an 80% identity to the Saccharomyces cerevisiae CDC42 gene product. Insect Sf9 cells infected with recombinant baculovirus vectors expressing the G25K cDNA produced a 25-kDa protein that bound GTP and was recognized by antibodies specifically reactive to G25K. G25K appears to be the human homolog of the CDC42 gene product, since expression of the G25K cDNA in S. cerevisiae suppressed both cdc42-1 and cdc24-4 temperature-sensitive lethal mutations.  相似文献   

13.
The ras-related protein, CDC42Hs, is a 22-kDa GTP-binding protein which is the human homolog of a Saccharomyces cerevisiae yeast-cell-division cycle protein. In attempting to isolate and biochemically characterize mammalian proteins capable of regulating various activities of CDC42Hs, we have identified an activity in bovine brain cytosol which effectively inhibits the dissociation of [3H]GDP from the platelet- or the Spodoptera frugiperda-expressed CDC42Hs protein. The purification of this activity was achieved by a series of steps which included ammonium sulfate fractionation, DEAE-Sephacel, Mono-Q, and Mono-S chromatographies. The purified CDC42Hs regulatory protein has an apparent molecular weight of 28,000, and cyanogen bromide-generated peptide sequences of this protein were identical to sequences from the carboxyl-terminal portion of rho-GDP-dissociation inhibitor (rho-GDI) (Fukumoto, Y., Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., Ueda, T., Kikuchi, A., and Takai, Y. (1990) Oncogene 5, 1321-1328). In addition, an Escherichia coli-expressed, glutathione S-transferase-rho-GDI fusion protein fully substitutes for the GDI which we have purified from bovine brain in its ability to inhibit GDP dissociation from CDC42Hs. These findings suggest either that a common regulatory protein (GDI) is capable of inhibiting GDP dissociation from the rho and CDC42Hs proteins or that these two GTP-binding proteins interact with GDI proteins of very similar structure. The purified brain GDI protein shows little ability to inhibit GDP dissociation from the E. coli-expressed CDC42Hs and is capable of only a very weak inhibition of the dissociation of [35S]guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) from the Spodoptera frugiperda-expressed CDC42. However, brain GDI very effectively inhibits the ability of the human dbl oncogene product to catalyze GDP dissociation from CDC42Hs. In addition to influencing guanine nucleotide association with CDC42Hs, the purified brain GDI protein also appears to catalyze the dissociation of CDC42Hs from the plasma membranes of human placenta and human epidermoid carcinoma (A431) cells. This effect by the GDI protein is observed whether the membrane-associated CDC42Hs is preincubated with GDP, GTP gamma S, or no guanine nucleotides, and occurs over a similar concentration range as that necessary for the inhibition of the intrinsic GDP dissociation.  相似文献   

14.
15.
G A Martin  G Bollag  F McCormick    A Abo 《The EMBO journal》1995,14(9):1970-1978
We identified three proteins in neutrophil cytosol of molecular size 65, 62 and 68 kDa which interact in a GTP-dependent manner with rac1 and CDC42Hs, but not with rho. Purification of p65 and subsequent peptide sequencing revealed identity to rat brain PAK65 and to yeast STE20 kinase domains. Based on these sequences we screened a human placenta library and cloned the full-length cDNA. The complete amino acid sequence of the human cDNA shares approximately identity with rat brain PAK65; within the kinase domain the human protein shares > 95% and approximately 63% identity with rat PAK65 and yeast STE20 respectively. The new human (h)PAK65 mRNA is ubiquitously expressed and hPAK65 protein is distinct from either human or rat brain PAK65. Recombinant hPAK65 exhibits identical specificity to the endogenous p65; both can bind rac1 and CDC42Hs in a GTP-dependent manner. The GTP-bound forms of rac1 and CDC42Hs induce autophosphorylation of hPAK65 on serine residues only. hPAK65 activated by either rac1 or CDC42Hs is phosphorylated on the same sites. Induction of hPAK65 autophosphorylation by rac1 or CDC42Hs stimulates hPAK65 kinase activity towards myelin basic protein and once hPAK65 is activated, rac1 or CDC42Hs are no longer required to keep it active. The affinities of rac/CDC42Hs for the non-phosphorylated and phosphorylated hPAK65 were similar. hPAK65 had only a marginal effect on the intrinsic GTPase activity of CDC42Hs, but significantly affected the binding and GAP activity of p190. These data are consistent with a model in which hPAK65 functions as an effector molecule for rac1 and CDC42Hs.  相似文献   

16.
Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which must be encoded by separate genes (R. Padmanabha and C. V. C. Glover, J. Biol. Chem. 262:1829-1835, 1987). The gene encoding the 42-kilodalton alpha subunit has been isolated by screening a yeast genomic library with oligonucleotide probes synthesized on the basis of the N-terminal amino acid sequence of the polypeptide. This gene (designated CKA1) contains an intron-free open reading frame of 372 amino acid residues. The deduced amino acid sequence is 67% identical to the alpha subunit of Drosophila melanogaster casein kinase II. The CKA1 gene product appears to be distantly related to other known protein kinases but exhibits highest similarity to the CDC28 gene product and its homolog in other species. Gene replacement techniques have been used to generate a null cka1 mutant allele. Haploid and diploid strains lacking a functional CKA1 gene appear to be phenotypically wild type, presumably because of the presence of the alpha' gene. Interestingly, the CKA1 gene appears to be single copy in the yeast genome; i.e., the alpha' gene, whose existence is known from biochemical studies and protein sequencing, cannot be detected by low-stringency hybridization.  相似文献   

17.
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.  相似文献   

18.
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.  相似文献   

19.
The gene cdc25+ is a mitotic inducer controlling transition from the G2 to the M phase of the cell cycle in the fission yeast, Schizosaccharomyces pombe. Using phenotypic complementation of a mutant of S. pombe, we have cloned a human homolog (CDC25Hu2) of the cdc25+ gene that differs markedly in structure from CDC25 (referred to here as CDC25Hu1), the first such homolog to be isolated. The carboxyl-terminal region of p63CDC25Hu2 shares significant sequence similarity with cdc25 protein homologs from other eukaryotes and possesses full complementation activity. CDC25Hu2 is expressed in human cell lines 10 to 100 times more than CDC25Hu1, and its expression is particularly high in some cancers, including SV40-transformed fibroblasts. Whereas CDC25Hu1 is predominantly expressed in G2, CDC25Hu2 is expressed throughout the cell cycle with a moderate increase in G2. Thus, at least two homologs of the cdc25 gene exist and are both expressed in human cells. The implications of CDC25Hu2 overexpression in some cancer cells are discussed.  相似文献   

20.
Abstract

Candida albicans, fungal yeast causes several lethal infections in immune-suppressed patients and recently emerged as drug-resistant pathogens worldwide. The present study aimed to screen putative drug targets of Candia albicans and to study the binding potential of novel natural lead compounds towards these targets by computational virtual screening and molecular dynamic (MD) simulation. Through extensive analysis of mitogen-activated protein kinase (MAPK) signalling pathways, mitogen-activated protein kinase-1 (HOG1) and cell division control protein-42 (CDC42) genes were prioritized as putative targets based on their virulent functions. The three-dimensional structures of these genes, not available in their native forms, were computationally modeled and validated. 76 lead molecules from various natural sources were screened and their drug likeliness and pharmacokinetic features were predicted. Among these ligands, two lead molecules that demonstrated ideal drug-likeliness and pharmacokinetic features were docked against HOG1 and CDC42 and their binding potential was compared with the binding of conventional drug Fluconazole with their usual target. The prediction was computationally validated by MD simulation. The current study revealed that Cudraxanthone-S present in Cudrania cochinchinensis and Scutifoliamide-B present in Piper scutifolium exhibited ideal drug likeliness, pharmacokinetics and binding potential to the prioritized targets in comparison with the binding of Fluconazole and their usual target. MD simulation showed that CDC42-Cudraxanthone-S and HOG1-Scutifoliamide-B complexes were exhibited stability throughout MD simulation. Thus, the study provides significant insight into employing HOG1 and CDC42 of MAPK as putative drug targets of C. albicans and Cudraxanthone-S and Scutifoliamide-B as potential inhibitors for drug discovery.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号