首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The ras-related protein, CDC42Hs, is a 22-kDa GTP-binding protein which is the human homolog of a Saccharomyces cerevisiae yeast-cell-division cycle protein. In attempting to isolate and biochemically characterize mammalian proteins capable of regulating various activities of CDC42Hs, we have identified an activity in bovine brain cytosol which effectively inhibits the dissociation of [3H]GDP from the platelet- or the Spodoptera frugiperda-expressed CDC42Hs protein. The purification of this activity was achieved by a series of steps which included ammonium sulfate fractionation, DEAE-Sephacel, Mono-Q, and Mono-S chromatographies. The purified CDC42Hs regulatory protein has an apparent molecular weight of 28,000, and cyanogen bromide-generated peptide sequences of this protein were identical to sequences from the carboxyl-terminal portion of rho-GDP-dissociation inhibitor (rho-GDI) (Fukumoto, Y., Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., Ueda, T., Kikuchi, A., and Takai, Y. (1990) Oncogene 5, 1321-1328). In addition, an Escherichia coli-expressed, glutathione S-transferase-rho-GDI fusion protein fully substitutes for the GDI which we have purified from bovine brain in its ability to inhibit GDP dissociation from CDC42Hs. These findings suggest either that a common regulatory protein (GDI) is capable of inhibiting GDP dissociation from the rho and CDC42Hs proteins or that these two GTP-binding proteins interact with GDI proteins of very similar structure. The purified brain GDI protein shows little ability to inhibit GDP dissociation from the E. coli-expressed CDC42Hs and is capable of only a very weak inhibition of the dissociation of [35S]guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) from the Spodoptera frugiperda-expressed CDC42. However, brain GDI very effectively inhibits the ability of the human dbl oncogene product to catalyze GDP dissociation from CDC42Hs. In addition to influencing guanine nucleotide association with CDC42Hs, the purified brain GDI protein also appears to catalyze the dissociation of CDC42Hs from the plasma membranes of human placenta and human epidermoid carcinoma (A431) cells. This effect by the GDI protein is observed whether the membrane-associated CDC42Hs is preincubated with GDP, GTP gamma S, or no guanine nucleotides, and occurs over a similar concentration range as that necessary for the inhibition of the intrinsic GDP dissociation.  相似文献   

2.
G A Martin  G Bollag  F McCormick    A Abo 《The EMBO journal》1995,14(9):1970-1978
We identified three proteins in neutrophil cytosol of molecular size 65, 62 and 68 kDa which interact in a GTP-dependent manner with rac1 and CDC42Hs, but not with rho. Purification of p65 and subsequent peptide sequencing revealed identity to rat brain PAK65 and to yeast STE20 kinase domains. Based on these sequences we screened a human placenta library and cloned the full-length cDNA. The complete amino acid sequence of the human cDNA shares approximately identity with rat brain PAK65; within the kinase domain the human protein shares > 95% and approximately 63% identity with rat PAK65 and yeast STE20 respectively. The new human (h)PAK65 mRNA is ubiquitously expressed and hPAK65 protein is distinct from either human or rat brain PAK65. Recombinant hPAK65 exhibits identical specificity to the endogenous p65; both can bind rac1 and CDC42Hs in a GTP-dependent manner. The GTP-bound forms of rac1 and CDC42Hs induce autophosphorylation of hPAK65 on serine residues only. hPAK65 activated by either rac1 or CDC42Hs is phosphorylated on the same sites. Induction of hPAK65 autophosphorylation by rac1 or CDC42Hs stimulates hPAK65 kinase activity towards myelin basic protein and once hPAK65 is activated, rac1 or CDC42Hs are no longer required to keep it active. The affinities of rac/CDC42Hs for the non-phosphorylated and phosphorylated hPAK65 were similar. hPAK65 had only a marginal effect on the intrinsic GTPase activity of CDC42Hs, but significantly affected the binding and GAP activity of p190. These data are consistent with a model in which hPAK65 functions as an effector molecule for rac1 and CDC42Hs.  相似文献   

3.
Rap2b is a ras-related GTP-binding protein isolated from a human platelet cDNA library. It shares 90% similarity to the previously described rap2a and is closely related to rap1a (Krev-1, smgp21), which has been shown to possess reversion of transformation activity in Kirsten ras transformed 3T3 cells. In this study we have partially purified a protein from bovine brain membranes which stimulates the GTPase activity of rap2b. This rap2b GTPase-activating protein (GAP) activity is not immunoreactive with antibodies specific for rap1 GAP or ras GAP, yet displays limited GTPase stimulatory activity toward rap1. This result differs from the previously described rap1 GAP which is highly specific for rap1. When the rap2 GAP activity is analyzed by coomassie staining, an enrichment of a approximately 55 kDa protein is observed providing further evidence of a distinct rap2 GAP.  相似文献   

4.
The protein products of the mammalian ras genes, p21ras, are regulatory guanine nucleotide binding proteins that are involved in the control of cell proliferation, though the exact biochemical processes regulated are unknown. Recently a cytoplasmic protein has been identified that interacts with and increases the GTPase activity of p21ras. It has been shown that this GTPase-activating protein, or GAP, interacts with the effector domain of ras, leading us and others to propose that GAP may be the target for regulation by p21ras. It has become apparent that ras is part of a much larger family of proteins, and at least 15 ras-related genes have now been identified in the mammalian genome. Each encodes a small (about 21 kDa) guanine nucleotide binding protein, but the functions of none of these regulatory molecules are known. We report here that mammalian cytoplasmic extracts contain GAP-like activity toward the products of two other ras-related genes, R-ras and rho. It appears that p23R-ras interacts with the same 125-kDa GAP protein as p21ras whereas p21rho interacts with a distinct 29-kDa protein, rho GAP.  相似文献   

5.
The smg-21 GTP-binding protein (smg p21) has the same effector domain as the ras proteins (ras p21s) and is identical with the proteins of the rap1A and Krev-1 genes. In this paper, two proteins stimulating the GTPase activity of smg p21 are partially purified from bovine brain cytosol. These proteins, designated as smg p21 GTPase-activating protein (GAP) 1 and 2, are separated from a c-ras p21 GAP described previously by column chromatographies. smg p21 GAP1 and -2 stimulate the GTPase activity of only smg p21 but not that of c-Ha-ras p21 or the rho and smg-25A GTP-binding proteins. smg p21 GAP1 or -2 does not stimulate the dissociation of guanosine 5'-3-O-(thio)triphosphate or GDP from smg p21. smg p21 GAP1 or -2 themselves do not have GTP/GDP binding or GTPase activity. The Mr values of smg p21 GAP1 and -2 are estimated to be 250-400 x 10(3) and 80-100 x 10(3) by gel filtration and sucrose density gradient ultracentrifugation, respectively. The activity of smg p21 GAP1 and -2 is killed by tryptic digestion or heat boiling. These results indicate that bovine brain contains two smg p21 GAPs in addition to c-ras p21 GAP.  相似文献   

6.
Two proteins stimulating the GTPase activity of the smg-21 GTP-binding protein (smg p21) having the same effector domain as the ras proteins (ras p21s) are partially purified from the cytosol fraction of human platelets. These proteins, designated as smg p21 GTPase activating protein (GAP) 1 and 2, do not stimulate the GTPase activity of c-Ha-ras p21. The GAP activity for c-Ha-ras p21 is also detected in the cytosol fraction of human platelets. smg p21 GAP1 and 2 are separated from c-Ha-ras p21 GAP by column chromatographies. The activity of smg p21 GAP1 and 2 is killed by tryptic digestion or heat boiling. The Mr values of smg p21 GAP1 and 2 are similar and are estimated to be 2.5-3.5 x 10(5) by gel filtration analysis. These results indicate that there are two GAPs for smg p21 in addition to a GAP for c-Ha-ras p21 in human platelets.  相似文献   

7.
Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.  相似文献   

8.
The rap1/Krev-1 gene encodes a ras-related protein that suppresses transformation by ras oncogenes. We have purified an 88 kd GTPase activating protein (GAP), specific for the rap1/Krev-1 gene product, from bovine brain. Based on partial amino acid sequences obtained from this protein, a 3.3 kb cDNA was isolated from a human brain library. Expression of the cDNA in insect Sf9 cells resulted in high level production of an 85-95 kd rap1GAP that specifically stimulated the GTPase activity of p21rap1. The complete deduced amino acid sequence is not homologous to any known protein sequences, including GAPs specific for p21ras. Northern and Western blotting analysis indicate that rap1GAP is not ubiquitously expressed and appears most abundant in fetal tissues and certain tumor cell lines, particularly the Wilms' kidney tumor, SK-NEP-1, and the melanoma, SK-MEL-3, cell lines.  相似文献   

9.
We have separated multiple small Mr GTP-binding proteins (G proteins) from bovine brain membranes by several column chromatographies and purified to near homogeneity four of them, including a novel Mr 24,000 G protein (smg p25A), a novel Mr 22,000 G protein (smg p21), the rho protein (rho p20), and the c-Ki-ras protein (c-Ki-ras p21). Among these small Mr G proteins, only smg p21 is phosphorylated stoichiometrically by cAMP-dependent protein kinase (protein kinase A), and c-Ki-ras p21 is phosphorylated to a small extent by protein kinase A in a cell-free system. None of smg p25A, rho p20, and other partially purified small Mr G proteins is phosphorylated by protein kinase A. Neither smg p21 nor other small Mr G proteins are phosphorylated by protein kinase C. About 1 mol of phosphate is maximally incorporated into 1 mol of smg p21 by protein kinase A. Only serine residue(s) are phosphorylated. The guanosine 5'-3-O-(thio) triphosphate (GTP gamma S)-bound and GDP-bound forms of smg p21 are phosphorylated with the same reaction velocity. The phosphorylation of smg p21 affects neither its GTP gamma S-binding nor GTPase activity. smg p21 is found in human platelets, and this human platelet smg p21 is also phosphorylated by protein kinase A at the same site(s) as bovine brain smg p21 in a cell-free system. When intact human platelets are stimulated by prostaglandin E1 known to elevate the cAMP level, four proteins with apparent Mr values of 240,000, 50,000, 24,000, and 22,000 are phosphorylated. These four proteins are also phosphorylated by the action of dibutyryl cAMP but not by the action of thrombin, Ca2+ ionophore A23187, or 12-O-tetradecanoylphorbol-13-acetate. Among the four proteins, the Mr 22,000 protein is identified as smg p21. The site(s) of phosphorylation of smg p21 by protein kinase A in a cell-free system are identical to that phosphorylated in response to prostaglandin E1 in intact platelets. These results indicate that among many small Mr G proteins, smg p21 is selectively phosphorylated by protein kinase A and that this G protein is also phosphorylated by this protein kinase in response to prostaglandin E1 in intact human platelets.  相似文献   

10.
The small GTP-binding protein rap2A exhibits a high level of identity with rap1 and ras proteins (60% and 46%, respectively). Nevertheless, its intrinsic GTPase activity is not stimulated by ras-GAP, and unlike the rap1A protein, it cannot compete with ras proteins for their interaction with ras-GAP. In addition, rap1-GAPm that is highly active on the GTPase activity of the rap1A product, also stimulates the GTPase activity of the rap2A protein but with a 30-40-fold lower efficiency. An activity that greatly stimulated the GTPase activity of the rap2 protein (rap2-GAP) was found in bovine brain cytosol and purified. However, it copurified with the cytosolic form of rap1-GAP and was more efficient at stimulating the GTPase activity of the rap1 protein; this 55 kD polypeptide, that is recognized by an antibody raised against rap1-GAPm, likely represents a degraded and soluble form of the full size 89 kD molecule. In bovine brain membranes, a weak GAP activity toward the rap2A protein was also detected; however, it was also attributable to the membrane-associated rap1-GAPm. Thus, it appears that a single rap-GAP protein, complete or degraded, is able to stimulate the GTPase activity of both rap1 and rap2 proteins.  相似文献   

11.
E Fawell  S Bowden  J Armstrong 《Gene》1992,114(1):153-154
A cDNA was isolated from the fission yeast, Schizosaccharomyces pombe, using mixed oligodeoxyribonucleotides encoding part of the GTP-binding site of the ras superfamily. The encoded protein is the homologue of the budding yeast CDC42 gene product and the human proteins, CDC42Hs and G25K.  相似文献   

12.
Amino acid sequences were obtained for four peptides (p1, -2, -3 and 4) generated by chemical or proteolytic cleavage of a 25 kDa GTP-binding protein purified from human placental and platelet membranes. The peptides shared sequence similarities with those contained in several of the ras-related GTP-binding proteins. Peptide p2, a 12-mer, was homologous with a region of the GTP-binding proteins that contains a structural motif proposed to contribute to the nucleotide binding site. However, whereas nearly all GTP-binding proteins exhibit the residues NKXD as this motif, p2 contains TQID. Antisera (Ap1 and Ap3) raised against synthetic peptides corresponding to p1 and p3 specifically reacted on Western blots with the 25 kDa GTP-binding protein purified from human placenta, human platelet and bovine brain as well as with a 25 kDa polypeptide in various cell lines. These results demonstrate the widespread existence of an abundant 25 kDa GTP-binding protein which contains a putative nucleotide binding domain that is chemically distinct from that described for all GTP-binding proteins of known primary structure.  相似文献   

13.
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.  相似文献   

14.
K Nagata  T Satoh  H Itoh  T Kozasa  Y Okano  T Doi  Y Kaziro  Y Nozawa 《FEBS letters》1990,275(1-2):29-32
A novel low Mr GTP-binding protein cDNA was isolated from a rat megakaryocyte cDNA library with a synthetic oligonucleotide probe corresponding to an 8-amino acid sequence specific for c25KG, a GTP-binding protein previously isolated from human platelet cytosol fraction [(1989) J. Biol. Chem. 264, 17000-17005]. The cDNA has an open reading frame encoding a protein of 221 amino acids with a calculated Mr of 25068. The protein is designated as ram (ras-related gene from megakaryocyte) protein (ram p25). The amino acid sequence deduced from the ram cDNA contains the consensus sequences for GTP-binding and GTPase domains. ram p25 shares about 23%, 39% and 80% amino acid homology with the H-ras, smg25A and c25KG proteins, respectively. The 3.5-kb ram mRNA was detected abundantly in spleen cells.  相似文献   

15.
A novel type of regulatory proteins for the rho proteins (rhoA p21 and rhoB p20), ras p21-like small GTP-binding proteins (G proteins), are partially purified from bovine brain cytosol. These regulatory proteins, named rho GDP dissociation stimulator (GDS) 1 and -2, stimulate the dissociation of GDP from rhoA p21 and rhoB p20. rho GDS1 and -2 are inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, smg p21B, and smg p25A. Since we have previously shown that the rate limiting step for the GDP/GTP exchange reaction of the rho proteins is the dissociation of GDP from these proteins, the present results suggest that rho GDS1 and -2 stimulate the GDP/GTP exchange reaction of the rho proteins. rho GDS1 and -2 are distinct from the GAP- and GDI-types of regulatory proteins for the rho proteins previously purified from bovine brain cytosol. rho GAP stimulates the GTPase activity of the rho proteins and rho GDI inhibits the GDP/GTP exchange reaction of the rho proteins. The present results together with these earlier observations indicate that the rho proteins are regulated by at least three different types of regulatory proteins, GDS, GDI, and GAP.  相似文献   

16.
We purified a novel ADP-ribosyltransferase produced by a Clostridium limosum strain isolated from a lung abscess and compared the exoenzyme with Clostridium botulinum ADP-ribosyltransferase C3. The C. limosum exoenzyme has a molecular weight of about 25,000 and a pI of 10.3. The specific activity of the ADP-ribosyltransferase is 3.1 nmol/mg/min with a Km for NAD of 0.3 microM. Partial amino acid sequence analysis of the tryptic peptides revealed about 70% homology with C3. The novel exoenzyme modifies selectively the small GTP-binding proteins of the rho family in human platelet membranes presumably at the same amino acid (asparagine 41) as known for C3. Recombinant rhoA and rhoB serve as substrates for C3 and the C. limosum exoenzyme. Whereas recombinant rac1 protein is only marginally ADP-ribosylated by C3 or by the C. limosum exoenzyme in the absence of detergent, in the presence of 0.01% sodium dodecyl sulfate rac1 is modified by C3 but not by the C. limosum exoenzyme. Recombinant CDC42Hs protein is a poor substrate for C. limosum exoenzyme and is even less modified by C3. The C. limosum exoenzyme is auto-ADP-ribosylated in the presence of 0.01% sodium dodecyl sulfate by forming an ADP-ribose protein bond highly stable toward hydroxylamine. The data indicate that ADP-ribosylation of small GTP-binding proteins of the rho family is not unique to C. botulinum C3 ADP-ribosyltransferase but is also catalyzed by a C3-related exoenzyme from C. limosum.  相似文献   

17.
The p21ras superfamily, involved in diverse processes including cell growth and intracellular trafficking, possesses intrinsic GTPase activity and cycles between GTP-bound active and GDP-bound quiescent states. This intrinsic activity, which results in down-regulation, is accelerated by GTPase activating proteins (GAPs). Other proteins regulating the GDP/GTP cycle include exchange proteins and dissociation inhibitors. The p21s rho, rac, and cdc42Hs constitute a subfamily implicated in cytoskeletal organization. BCR and n-chimaerin are prototypes of a new GAP family for these p21s. To investigate proteins modulating GTP hydrolysis of the three p21s, we developed a novel overlay assay applicable to tissue extracts. Diverse GAPs with different specificities were identified in all rat tissues. Brain contained rac1 GAPs of 45, 50, 85, 100, and 150 kDa. The p50 and p150 GAPs also act on rhoA and cdc42Hs and are ubiquitous, while the p45-GAP, n-chimaerin, is brain- and testis-specific and acts preferentially on rac1; the p100 GAP acts on both rac1 and cdc42Hs and is brain-specific. A new class of p21-interacting proteins was also identified. This diversity, versatility, and tissue specificity of GAPs may be required for fine control of the down-regulation of GTP-bound p21s and the suggested specific downstream effects of individual GAPs, which could involve "cross-talk" between GAPs and p21s.  相似文献   

18.
G25K is a low-molecular-mass GTP-binding protein with a broad distribution in mammalian tissues. A cDNA clone was isolated by using oligonucleotides corresponding to the partial amino acid sequence of purified human G25K. The cDNA encodes an 191-amino-acid polypeptide containing GTP-binding consensus sequences and a putative farnesylation site at the C terminus. The sequence exhibits 50 and 70% identities to the mammalian rho and rac proteins, respectively, and an 80% identity to the Saccharomyces cerevisiae CDC42 gene product. Insect Sf9 cells infected with recombinant baculovirus vectors expressing the G25K cDNA produced a 25-kDa protein that bound GTP and was recognized by antibodies specifically reactive to G25K. G25K appears to be the human homolog of the CDC42 gene product, since expression of the G25K cDNA in S. cerevisiae suppressed both cdc42-1 and cdc24-4 temperature-sensitive lethal mutations.  相似文献   

19.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

20.
The leukocyte response to chemoattractants is transduced by the interaction of transmembrane receptors with GTP-binding regulatory proteins (G-proteins). RGS1 is a member of a protein family constituting a newly appreciated and large group of proteins that act as deactivators of G-protein signaling pathways by accelerating the GTPase activity of G-protein alpha subunits. We demonstrate here that RGS1 is expressed in human monocytes; by immunofluorescence and subcellular fractionation RGS1 was localized to the plasma membrane. By using a mixture of RGS1 and plasma membranes, we were able to demonstrate GAP activity of RGS1 on receptor-activated G-proteins; RGS1 did not affect ligand-stimulated GDP-GTP exchange. We found that RGS1 desensitizes a variety of chemotactic receptors including receptors for N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and C5a. Interaction of RGS proteins and ligand-induced G-protein signaling can be demonstrated by determining GTPase activity using purified RGS proteins and plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号