首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The root endophytic fungus Heteroconium chaetospira was isolated from roots of Chinese cabbage grown in field soil in Japan. This fungus penetrates through the outer epidermal cells of its host, passes into the inner cortex, and grows throughout the cortical cells, including those of the root tip region, without causing apparent pathogenic symptoms. There are no ultrastructural signs of host resistance responses. H. chaetospira has been recovered from 19 plant species in which there was no disruption of host growth. H. chaetospira has a symbiotic association with Chinese cabbage. The fungus provides nitrogen in exchange for carbon. These associations are beneficial for the inoculated plants, as demonstrated by increased growth rate. When used as a preinoculum, H. chaetospira suppresses the incidence of clubroot and Verticillium yellows when the test plant is post-inoculated with the causal agents of these diseases. H. chaetospira is an effective biocontrol agent against clubroot in Chinese cabbage at a low to moderate soil moisture range and a pathogen resting spore density of 10(5) resting spores per gram of soil in situ. Disease caused by Pseudomonas syringae pv. macricola and Alternaria brassicae on leaves can be suppressed by treatment with H. chaetospira. The fungus persists in the roots and induces systemic resistance to the foliar disease.  相似文献   

2.
Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant.  相似文献   

3.
In the 'F' horizons of acid mor-humus soils of heathland ecosystems, mycorrhizal roots of the dominant ericaceous species form a large fraction of the soil biomass. Rapid turnover of these roots provides the potential for recycling of substantial amounts of nitrogen contained in their fungal and plant components. Here, we first determine the amount of N in the biomass of ericoid roots growing in heathland and show it to constitute a large proportion of total soil N. In order to assess the accessibility of this N to ericaceous plants, experiments were then conducted using aseptically produced shoot and root necromass of Vaccinium macrocarpon Ait., the roots being grown with or without mycorrhizal colonization. These materials were provided as sole nitrogenous substrates in growth experiments using the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan in pure culture and V. macrocarpon in the mycorrhizal (M) or non-mycorrhizal (NM) condition as test organisms. The experiments were designed to test the hypothesis that the N contained in these substrates can be mobilized by the mycorrhizal endophyte. The ability of the endophyte to utilize the substrates was determined by measuring fungal yields and by assessing the presence of its extra-cellular protease and chitinase enzymes. Transfer of N to the host by the endophyte was determined through measurements of plant yield and tissue N contents. H. ericae produced a significantly greater yield on shoot and mycorrhizal root necromass than on non-mycorrhizal root necromass. The extra-cellular enzymes protease and chitinase were produced by the fungus when grown on the M root necromass. The fungus also transferred N to the host plant, up to 76% of N contained in the substrate being found in M plants whereas less than 5% was present in their NM counterparts.  相似文献   

4.
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.  相似文献   

5.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   

6.
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experiments on the relationship between the host plant and AM in soil or in sterile root-organ culture have provided clear evidence that the extraradical mycelia of AM fungi uptake various forms of nitrogen (N) and transport the assimilated N to the roots of the host plant. However, the uptake mechanisms of various forms of N and its translocation and transfer from the fungus to the host are virtually unknown. Therefore, there is a dearth of integrated models describing the movement of N through the AM fungal hyphae. Recent studies examined Ri T-DNA-transformed carrot roots colonized with AM fungi in 15N tracer experiments. In these experiments, the activities of key enzymes were determined, and expressions of genes related to N assimilation and translocation pathways were quantified. This review summarizes and discusses the results of recent research on the forms of N uptake, transport, degradation, and transfer to the roots of the host plant and the underlying mechanisms, as well as research on the forms of N and carbon used by germinating spores and their effects on amino acid metabolism. Finally, a pathway model summarizing the entire mechanism of N metabolism in AM fungi is outlined.  相似文献   

7.
Arbuscular mycorrhiza: the mother of plant root endosymbioses   总被引:9,自引:0,他引:9  
Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.  相似文献   

8.
In this study, interactive effects of plant competition and herbivory on plant quality and herbivore development were examined in a greenhouse experiment where cabbage plants [Brassica oleracea L. var. capitata (Brassicaceae)] were intercropped with red clover [Trifolium pratense L. (Fabaceae)]. Cabbages were grown with two red clover densities and attack rates by the root feeding herbivore the turnip root fly, Delia floralis Fall. (Diptera: Anthomyiidae). Above ground and below ground cabbage biomass was reduced through intercropping and larval damage. Intercropping also resulted in lower nitrogen and higher carbon root levels compared with levels in the roots of monocultured cabbage. Furthermore, both root nitrogen and carbon levels increased with herbivory. Root neutral detergent fibre (NDF) and lignin content increased in response to both increased plant competition and higher egg densities. For lignin, an interaction effect was observed in the form of elevated levels in intercropped plants subjected to larval damage, while levels in roots of monocultured cabbage remained unchanged. The quality changes brought about by clover competition affected D. floralis development negatively, which resulted in reduced pupal weight. In addition, increased egg density also decreased larval growth. The effects on the development of D. floralis in relation to host plant quality are discussed. Handling editor: Gimme Walter  相似文献   

9.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

10.
* The influence of carbohydrate availability to mycorrhizal roots on uptake, metabolism and translocation of phosphate (P) by the fungus was examined in axenic cultures of transformed carrot (Daucus carota) roots in symbiosis with Glomus intraradices. * 14C-labelled carbohydrates, 33P-phosphate and energy dispersive X-ray microanalysis were used to follow the uptake and transfer of C and P in the arbuscular mycorrhizal (AM) symbiosis. * The uptake of P by the extraradical mycelium (ERM) and its translocation to the mycorrhizal roots was stimulated and the metabolic and spatial distribution of P within the fungus were altered in response to increased carbohydrate availability. Sucrose supply resulted in a decrease of polyphosphates and an increased incorporation into phospholipids and other growth-related P pools and also caused elevated cytoplasmic P levels in the intraradical mycelium (IRM) within the root and higher cytoplasmic P levels in the root cortex. * These findings indicate that the uptake of P by the fungus and its transfer to the host is also stimulated by the transfer of carbon from plant to fungus across the mycorrhizal interface.  相似文献   

11.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

12.
The effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent for root-knot nematodes was investigated in four experiments. The growth of the fungus in the rhizosphere differed significantly with different plant species, the brassicas kale and cabbage supporting the most extensive colonization. The presence of nematodes in roots increased the growth of the fungus on most plants, and this effect was associated with the emergence of egg masses on the root surface; the presence of Meloidogyne incognita did not stimulate growth of the fungus in the rhizosphere until 5 weeks after the addition of infective juveniles to soil. The susceptibility of the plant host to M. incognita attack influenced the numbers of nematode eggs parasitized by the fungus. The control of the nematode was less effective on tomato roots, which produced large galls as a result of nematode infection compared with control on potato roots where galls were smaller, despite the greater abundance of the fungus in the rhizosphere of tomato plants. In large galls, a significant proportion of the egg masses remained embedded in the roots and was isolated from the fungus which was confined to the rhizosphere. Hence, the plant species has a marked effect on the efficacy of V. chlamydosporium as a biological control agent.  相似文献   

13.
? Sucrose exuded by plants into the rhizosphere is a crucial component for the symbiotic association between the beneficial fungus Trichoderma and plant roots. In this article we sought to identify and characterize the molecular basis of sucrose uptake into the fungal cells. ? Several bioinformatics tools enabled us to identify a plant-like sucrose transporter in the genome of Trichoderma virens Gv29-8 (TvSut). Gene expression profiles in the fungal cells were analyzed by Northern blotting and quantitative real-time PCR (qRT-PCR). Biochemical and physiological studies were conducted on Gv29-8 and fungal strains impaired in the expression of TvSut. ? TvSut exhibits biochemical properties similar to those described for sucrose symporters from plants. The null expression of tvsut caused a detrimental effect on fungal growth when sucrose was the sole source of carbon in the medium, and also affected the expression of genes involved in the symbiotic association. ? Similar to plants, T. virens contains a highly specific sucrose/H(+) symporter that is induced in the early stages of root colonization. Our results suggest an active sucrose transference from the plant to the fungal cells during the beneficial associations. In addition, our expression experiments suggest the existence of a sucrose-dependent network in the fungal cells that regulates the symbiotic association.  相似文献   

14.
Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures.  相似文献   

15.
Vesicular-arbuscular mycorrhizal fungi are symbionts for a large variety of crop plants; however, the form in which they take up carbon from the host is not established. To trace the course of carbon metabolism, we have used nuclear magnetic resonance spectroscopy with [13C]glucose labeling in vivo and in extracts to examine leek (Allium porrum) roots colonized by Glomus etunicatum (and uncolonized controls) as well as germinating spores. These studies implicate glucose as a likely substrate for vesicular-arbuscular mycorrhizal fungi in the symbiotic state. Root feeding of 0.6 mM 1-[13C]glucose labeled only the fungal metabolites trehalose and glycogen. The time course of this labeling was dependent on the status of the host. Incubation with 50 mM 1-[13C]glucose caused labeling of sucrose (in addition to fungal metabolites) with twice as much labeling in uncolonized plants. There was no detectable scrambling of the label from C1 glucose to the C6 position of glucose moieties in trehalose or glycogen. Labeling of mannitol C1,6 in the colonized root tissue was much less than in axenically germinating spores. Thus, carbohydrate metabolism of host and fungus are significantly altered in the symbiotic state.  相似文献   

16.
In a water-exclusion experiment, five different ecotypes of beech (Fagus sylvatica L.; representing regions of different environmental and climatic conditions in Baden-Württemberg, Germany) were subjected to drought conditions of different severity between July and September of two consecutive years. Drought stress as characterised by the water content and the pre-dawn water potential of the leaves was related to the degree of mycorrhization, the type of ectomycorrhiza, and the physiological properties of individual fungus/plant interactions at the fine roots of different beech ecotypes. Our data show that decreased soil water availability did not significantly change either the degree of fungal colonisation of beech roots (measured by the amount of ergosterol) or the number of ectomycorrhizal types per root system. Drought did, however, have an influence on the composition of the ectomycorrhizal community, and different mycorrhizal types responded to drought differently in terms of their patterns of occurrence/abundance. While the abundance of the dominant mycorrhizal types, formed with Byssocorticium atrovirens and Lactarius subdulcis, was not affected, drought increased the abundance of mycorrhiza formed between beech and Xerocomus chrysenteron. A detailed analysis of plant and fungal carbohydrates in mycorrhizas indicated that different drought intensities led to distinguishable responses. In plants exhibiting a pre-dawn water potential of down to -1.96 MPa, drought caused the accumulation of sucrose, glucose and fructose, and of fungus-specific compounds such as mannitol and arabitol in mycorrhizal roots at the expense of, e.g. trehalose. The accumulation of sugar alcohols, which constitute compatible solutes known to counteract drought stress, was species-specific. Mycorrhizas with X. chrysenteron formed large amounts of arabitol, while those with L. subdulcis accumulated mannitol. Sustained partitioning of carbon towards the mycorrhizal fungi under drought was also reflected by an increase of nitrogen storage in the fungal vacuoles. In treatments where the pre-dawn water potential reached values of as low as -2.4 MPa, such alterations were no longer found. In such plants, the starch and soluble sugars content was generally reduced, which also resulted in a lack of increase in protective, fungus-specific sugar alcohols. In summary, the data show that, within certain limits, an increase in drought causes a shift in plant/fungus communities. The shift in the pattern of fungus-specific compounds could possibly be used as a sensitive measure of physiological stress imposed on this symbiosis.  相似文献   

17.
Piriformospora indica (Sebacinaceae, Basidiomycota) is an axenically cultivable, plant growth promoting root endophyte with a wide host range, including Populus. Rooting of Populus Esch5 explants started within 6 days after transfer to WPM medium. If such plantlets with roots were inoculated with P. indica, there was an increase in root biomass, and the number of 2nd order roots was increased significantly. A totally different observation was recorded when the explants were placed into WPM with pre-grown P. indica. The interaction led to complete blocking of root production and severely inhibited plant growth. Additionally, branched aerial roots appeared which did not penetrate the medium. On contact with the fungal colony or the medium, the ends of the aerial roots became inflated. Prolonged incubation stimulated the fungus to colonize aerial parts of the plant (stem and leaves). Mycelium not only spread on the surface of the aerial parts, but also invaded the cortical tissues inter- and intracellularly. Detached Populus leaves remained vital for 4 - 5 weeks on sterile agar media or on AspM medium with pre-grown P. indica. When the fungus was pre-grown on culture media such as WPM, containing ammonium as the main source of nitrogen, leaves in contact with the cultures turned brownish within 4 - 12 h. Thereafter, the leaves bleached, and about one day later had become whitish. Thus, cultural conditions could alter the behaviour of the fungus drastically: the outcome of the interaction between plant and fungus can be directed from mutualistic to antagonistic, characterized by fungal toxin formation and extension of the colonization to Populus shoots.  相似文献   

18.
A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.  相似文献   

19.
Chinese cabbage roots colonized by the dematiaceous fungal taxon Heteroconium chaetospira were previously found to become highly resistant to clubroot and Verticillium yellows. The dematiaceous fungus possesses an endophytic nature, but no detailed anatomical studies on endophyte–host plant interactions have so far been provided. Light and electron microscopy revealed that hyphae of H. chaetospira were abundant on and inside the root epidermal cells by 3 weeks following inoculation. The penetration pegs easily breached into epidermal cells, and the infection hyphae penetrated into cortical cells. Some appressorium-like swollen structures formed from intracellular hyphae, but no visible degradation of the host cell walls was evident where the hyphae contacted. No visible signs of host reactions and no invagination of the host plasma membrane around the hyphae were seen in the host cells. By 8 weeks following inoculation, masses of closely packed fungal cells had been formed in some cells of the epidermis and cortical layers, but further hyphal ingress was halted, mostly in the inner cortical cell layer. Thus, root vascular cylinders remained intact.  相似文献   

20.
培养容器容积对AM真菌生长发育的影响   总被引:1,自引:0,他引:1  
研究宿主植物栽培容器对丛枝菌根(Arbuscularmycorrhizae,AM)真菌Glomusmosseae生长发育的影响。结果表明:小容积容器的根系密度相对较大,在菌根共生体建立初期,菌根真菌繁殖体与根接触的机会增大,对于菌根真菌的迅速侵染及共生体的迅速建立非常有利,同时还增大了根外菌丝二次侵染的机会,从而使菌根真菌生长发育形成了一个良性循环,最终有利于根外孢子的形成。容器对共生体的影响决不是简单的盆的体积问题,而与其面积和体积之比有关,也和种植密度有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号