首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article reports on the optical properties of 0.5% mol of Sm3+, Dy3+ ion‐doped B2O3‐TeO2‐Li2O‐AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd‐Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm3+ and Dy3+:LiAlFBT glasses showed a bright reddish‐orange emission at 598 nm (4G5/26H7/2) and an intense yellow emission at 574 nm (4F9/26H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm3+ and Dy3+:LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
BaO‐B2O3‐P2O5 glasses doped with a fixed concentration of Tb3+ ions and varying concentrations of Al2O3 were synthesized, and the influence of the Al3+ ion concentration on the luminescence efficiency of the green emission of Tb3+ ions was investigated. The optical absorption, excitation, luminescence spectra and fluorescence decay curves of these glasses were recorded at ambient temperature. The emission spectra of terbium ions when excited at 393 nm exhibited two main groups of bands, corresponding to 5D3 → 7Fj (blue region) and 5D4 → 7Fj (green region). From these spectra, the radiative parameters, viz., spontaneous emission probability A, total emission probability AT, radiative lifetime τ and fluorescent branching ratio β, of different transitions originating from the 5D4 level of Tb3+ ions were evaluated based on the Judd‐Ofelt theory. A clear increase in the quantum efficiency and luminescence of the green emission of Tb3+ ions corresponding to 5D4 → 7F5 transition is observed with increases in the concentration of Al2O3 up to 3.0 mol%. The improvement in emission is attributed to the de‐clustering of terbium ions by Al3+ ions and also to the possible admixing of wave functions of opposite parities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

4.
A series of SrMoO4:Sm3+,Tb3+,Na+ phosphors was synthesized using a high‐temperature solid‐state reaction method in air. On excitation at 290 nm, SrMoO4:Sm3+,Tb3+ phosphor emitted light that varied systematically from green to reddish‐orange on changing the Sm3+ and Tb3+ ion concentrations. The emission intensities of SrMoO4:Sm3+ and SrMoO4:Sm3+,Tb3+ phosphors were increased two to four times due to charge compensation when Na+ was added as a charge compensator. The luminescence mechanism and energy transfer could be explained using energy‐level diagrams of the MoO42– group, Sm3+ and Tb3+ ions. SrMoO4:Sm3+,Tb3+,Na+ could be used as reddish‐orange phosphor in white light‐emitting diodes (LEDs) based on an ~ 405 nm near‐UV LED chip. This research is helpful in adjusting and improving the luminescence properties of other phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Calcium boro fluoro zinc phosphate glasses modified using alkali oxide and doped with Nd3+ and Er3+ ions with the chemical composition of 69.5 (B2O3) + 10 (P2O5) + 10 (CaF2) + 5 (ZnO) + 5 (Na2O/Li2O/K2O) + 0.5 (Er2O3/Nd2O3) were prepared using a conventional melt quenching technique. The results of X-ray diffraction patterns indicated the amorphous nature of all the prepared glasses. The visible–near-infrared red (NIR) absorption spectra of these glasses were analyzed systematically. The NIR emission spectra of Er3+ and Nd3+:calcium boro fluoro zinc phosphate glasses showed prominent emission bands at 1536 nm (4I13/24I15/2) and 1069 nm (4F3/24I11/2) respectively with λexci = 514.5 nm (Ar+ laser) as the excitation source.  相似文献   

6.
A series of Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors was synthesized by a conventional solid‐state reaction method in air, and their structural and spectroscopic properties were investigated. The optimal doping concentration of Sm3+ in SrMoO4:Sm3+ phosphor is 5 mol%. Under excitation with 275 nm, in Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors, the emission band of the host was found to overlap with the excitation bands peaking at ~500 nm of Sm3+ ion, and the energy transfer from MoO42? group to Sm3+ ion can also be observed. The International Commission on Illumination (CIE) chromaticity coordinates of Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation 275 nm varied systematically from an orange (0.4961, 0.3761) (y = 0) to a white color (0.33, 0.3442) (y = 0.95) with increasing calcium oxide (CaO) concentration. However, Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation at 404 nm only showed red emission and the energy transfer between MoO42? group to Sm3+ ion was not observed. The complex mechanisms of luminescence and energy transfer are discussed by energy level diagrams of MoO42? group and Sm3+ ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Frequency up‐conversion (UC) emission from the Nd3+‐Yb3+/Nd3+‐Yb3+‐Li+ co‐doped gadolinium oxide (Gd2O3) phosphors prepared by the solution combustion technique in the visible range have been studied by using 980 nm near infrared (NIR) laser diode excitation. The crystalline structure and formation of the cubic phase has been confirmed with the help of X‐ray diffraction (XRD) studies. XRD peak shifts have been found towards the lower diffraction angle side in the case of the Nd3+‐Yb3+‐Li+ co‐doped phosphors. Surface morphology and particle size information have been observed by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Down‐conversion emission study under 351 nm excitation in the visible region for the Nd3+‐Yb3+/Nd3+‐Yb3+‐Li+ co‐doped phosphors has been performed. The UC emission bands lying in the green and red region arising from the Nd3+ ions have been enhanced by ~260 times, ~113 times due to incorporation of Li+ ions in the Nd3+‐Yb3+ co‐doped phosphors. Photometric characterization has been done for the Nd3+‐Yb3+/Nd3+‐Yb3+‐Li+ co‐doped phosphors. The present study suggests the capability of the synthesized phosphors in near‐infrared (NIR) to visible upconverter and luminescent device applications.  相似文献   

8.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

9.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

11.
In the present study, the effect of bismuth oxide (Bi2O3) content on the structural and optical properties of 0.5Sm3+‐doped phosphate glass and the effect of concentration on structural and optical properties of Sm3+‐doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X‐ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd–Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm3+ ions. The emission spectra of Sm3+‐doped BiP glass showed two intense emission bands, 4G5/26H7/2 (orange) and 4G5/26H9/2 (red) for which the stimulated emission cross‐sections (σe) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4G5/2 level of Sm3+ ions. The suitable combination of Bi2O3 (10 mol%) and Sm3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange‐red photonic materials.  相似文献   

12.
Yongfu Teng 《Luminescence》2019,34(4):432-436
In the Ba9Lu2Si6O24 (BLS) host, Ce3+ shows cyan emissions peaking at 490 nm under 400 nm excitations. BLS:Tb3+ only can be effectively excited by 254 nm light and gives rise to green emissions at 553 nm. However, both the cyan and green emissions can be obtained in BLS:Ce3+,Tb3+ under 400 nm excitations due to effective energy transfers from Ce3+ to Tb3+. BLS:Mn2+ shows red emissions peaking at 610 nm under 414 nm excitations. By co‐doping Ce3+, Tb3+ and Mn2+, tunable full‐color emissions were obtained. The BLS:0.3Ce3+,0.6Tb3+,0.15Mn2+ single phosphor exhibits a white light with a high color rendering index of 85 and a correlated color temperature of 5480 K under 400 nm excitation.  相似文献   

13.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Samarium ion (Sm3+)-doped alkali zinc alumino borosilicate (AZABS) glass was synthesized via quick melt quench technique. Various spectroscopic studies like optical absorption, photoluminescence (PL) emission, PL excitation, temperature-dependent PL and PL decay kinetics were performed on the as prepared glass system. Under 402 nm excitation, three sharp bands at wavelengths 563, 599 and 645 nm corresponding to transitions 4G5/26H5/2, 6H7/2 and 6H9/2, respectively, can be seen in the PL emission spectra. The 0.25 mol% Sm3+ glass has the highest intensity for these emissions. The lanthanide interaction in the glass matrix is dipole–dipole in nature as was proven from Dexter's analysis. The direct bandgap of 0.25 mol% Sm3+-doped AZABS glass was calculated to be 2.88 eV. The lifetimes of the as prepared glass range from 1.93 ms for the lowest concentration of Sm3+ to 0.75 ms for the highest. From temperature dependent PL studies, the activation energy for 0.25 mol% Sm3+-doped AZABS glass was found to be 0.19 eV which shows high thermal stability of this glass. We propose to utilize these Sm3+-doped AZABS glasses for white-light emitting diodes (w-LEDs) and solid-state lighting (SSL) applications.  相似文献   

15.
A series of novel red‐emitting Sm3+‐doped bismuth silicate phosphors, Bi4Si3O12:xSm3+ (0.01 ≤ x ≤ 0.06), were prepared via the sol–gel route. The phase of the synthesized samples calcinated at 800 °C is isostructural with Bi4Si3O12 according to X‐ray diffraction results. Under excitation with 405 nm light, some typical peaks of Sm3+ ions centered at 566, 609, 655 and 715 nm are found in the emission spectra of the Sm3+‐doped Bi4Si3O12 phosphors. The strongest peak located at 609 nm is due to 4G5/26H7/2 transition of Sm3+. The luminescence intensity reaches its maximum value when the Sm3+ ion content is 4 mol%. The results suggest that Bi4Si3O12:Sm3+ may be a potential red phosphor for white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Photoluminescence (PL) and thermoluminescence (TL) properties of rare earth (RE) ion (RE = Dy3+, Sm3+, Ce3+, Tb3+) activated microcrystalline BaMgP2O7 phosphors are presented in this work. Non‐doped and doped samples of BaMgP2O7 were prepared using a solid state diffusion method and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), PL and TL. The XRD measurement confirmed the phase purity of the BaMgP2O7 host matrix. The average particle size was found through SEM measurement to be around 2 μm. All activators using the PL technique displayed characteristic excitation and emission spectra that corresponded to their typical f → f and f → d transitions respectively. Thermoluminescence measurements showed that BaMgP2O7:RE (RE = Dy3+, Sm3+, Tb3+, Ce3+) and co‐doped BaMgP2O7:Ce3+,Tb3+ phosphors have also TL behaviour.  相似文献   

17.
Sm3+ ions doped strontium lithium lead borate glasses (SLLB:Sm) were prepared using a conventional melt‐quenching technique. The glasses were analyzed using X‐ray diffractometry and Fourier transform infrared spectroscopy, optical absorption, fluorescence spectral analysis, and fluorescence lifetime decay. The Judd–Ofelt (J–O) parameters and radiative parameters of the SLLB:Sm10 glass (1.0 mol% Sm3+ ion‐doped glass) were calculated using J–O theory. From the emission spectra, among all the synthesized glass, SLLB:Sm10 glass had the highest emission intensity for 4G5/26H11/2 transition (610 nm). Emission parameters, such as stimulated emission cross‐section and optical gain bandwidth, were calculated. For all concentrations of Sm3+ ions, the decay profile showed an exponential nature and decreased when the Sm3+ ion concentration was increased due to a concentration quenching effect. This result suggests that the synthesized SLLB:Sm10 glass could be used for application in high‐density optical memory devices.  相似文献   

18.
An energy transfer process from Ce3+ to Tb3+ ions was successfully achieved in a Li2SO4–Al2(SO4)3 mixed‐sulphate system. A wet‐chemical synthesis was employed to prepare the Li2SO4–Al2(SO4)3 system by doping Ce3+ and Tb3+ ions individually as well as collectively. The phases were identified using X‐ray diffraction studies. The as‐prepared samples were characterized by FT‐IR and photoluminescence measurements. Green‐light emission was exhibited by Ce3+, Tb3+ co‐doped Li2SO4–Al2(SO4)3 system, thus, indicating its potential as a material for display devices or in the lamp industry.  相似文献   

19.
A novel tunable red emitting phosphor LiBaB9O15:Sm2+/Sm3+, Li+ with broad excitation band was synthesized by a high temperature solid‐state method. Luminescence properties were investigated in detail by luminescence, X‐ray photoelectron spectroscopy (XPS) spectra and CIE chromaticity coordinates. XPS data confirmed that there were Sm3+ in LiBaB9O15:Sm3+ and Sm2+/Sm3+ in LiBaB9O15:Sm2+/Sm3+, respectively. Spectral property of LiBaB9O15:Sm3+, LiBaB9O15:Sm3+/Sm2+ and LiBaB9O15:Sm2+, Li+ presented that the excitation band of Sm3+ widened and the excitation band of Sm2+ ranged from 350 to 450 nm. And the red light color is tunable with changing Li+ concentration. The results indicated that LiBaB9O15:Sm2+/Sm3+, Li+ may be promising red phosphor for white light emitting diodes.  相似文献   

20.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号