首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemokines help control normal leukocyte trafficking as well as their infiltration into tissues during acute and chronic inflammation. Matrix metalloproteinases (MMPs) help support the extravasation and infiltration of leukocytes through limited proteolysis of basement membranes and matrix material. The effect of the chemokines RANTES/CCL5, MCP-1/CCL and SDF-1/CXCL12 on secretion of the matrix metalloproteinase B and its endogenous inhibitor TIMP-1 was studied. RANTES/CCL5 and SDF-1/CXCL12 were found to induce MMP-9 secretion in primary human monocytes while TIMP-1 secretion was not affected. RANTES/CCL5 effects were mediated through CCR1 because the CCR1 antagonist BX471 was found to effectively block RANTES/CCL5-induced MMP-9 secretion.  相似文献   

2.
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), beta-chemokines, increased oxidative stress (SOX) and inflammation have been implicated as important factors in atherosclerosis and vascular remodeling. We hypothesized the possible roles of beta-chemokines [monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory proteins (MIP-1alpha, MIP-1beta) and regulated upon activation, normal T-cell expressed and secreted (RANTES)] as regulators of the metabolism of the vascular extracellular matrix in conditions of increased SOX in hemodialysis (HD) patients. We compared pre-dialysis levels of MMP-9/TIMP-1 system, beta-chemokines, Cu/Zn superoxide dismutase (Cu/Zn SOD) as a marker of SOX and C-reactive protein (CRP) as a marker of inflammation in HD patients with and without cardiovascular disease (CVD) to those of controls. HD patients, particularly those with CVD, showed a significant increase in values of Cu/Zn SOD, CRP, TIMP-1, TIMP-1/MMP-9 ratio, MCP-1 and MIP-1beta, whereas RANTES levels were lower than in the controls. The levels of MIP-1alpha as well as MMP-9 in all HD groups were similar to the controls. The positive correlations were observed between the MMP-9/TIMP-1 system and beta-chemokines, SOX and inflammation in whole HD group and in the subgroup with CVD. Multivariate analysis showed that the duration of dialysis followed by Cu/Zn SOD, MIP-1alpha and beta levels were the significant positive predictors of TIMP-1. In conclusion, our data show that MMP-9/TIMP-1 system and beta-chemokines could cooperate in conditions of elevated SOX, which ultimately predisposes hemodialysis patients to accelerated atherosclerosis.  相似文献   

3.
4.
The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.  相似文献   

5.
The progressive growth of Echinococcus multilocularis metacestodes and their tissue infiltration will cause organ malfunction and finally failure. In few patients, E. multilocularis metacestode proliferation will spontaneously regress, but little is known about the determinants which may restrain metacestode survival and growth. In this study, chemokine responses were investigated in E. multilocularis patients at different states of infection, i.e. with progressive, stable and cured alveolar echinococcosis (AE). Characteristic chemokine profiles and changes in their production were observed in AE patients and infection-free controls when their peripheral blood cells were cultured with E. multilocularis antigens. The production of CC and CXC chemokines which associate with inflammation (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5 and GRO-α/CXCL1) was constitutively larger in AE patients than in controls; and the elevated chemokine releases were equal in patients with progressive, stable or cured AE. Cluster analyses identified three distinct chemokine response profiles; chemokines were enhanced, depressed or produced in similar quantities in AE patients and controls. A disparate cellular responsiveness was observed in AE patients to viable E. multilocularis vesicles; cluster 1 (GRO-α/CXCL1, MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2 chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were clearly diminished, while cluster 3 chemokines (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5) augmented. The increased production of inflammatory chemokines in patients even with cured AE could be induced by residual E. multilocularis metacestode lesions which continuously stimulate production of inflammatory chemokines. E. multilocularis metacestodes also suppressed cellular chemokine production in AE patients, and this may constitute an immune escape mechanism which reduces inflammatory host responses, prevents tissue destruction and organ damage, but may also facilitate parasite persistence.  相似文献   

6.
Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.  相似文献   

7.
Chagas' disease, caused by Trypanosoma cruzi, is a major cause of cardiovascular disease in Latin America. Exacerbated inflammation disproportional to parasite load characterizes chronic myocardial lesions in chagasic patients. Chemokines and their receptors are expected to account for the renewed inflammatory processes after the inoculation of the parasite, but their potential unique functions are far from being clear. Herein, we evaluated the effect of a DNA vaccine encoding CCL4/MIP-1beta, a CC-chemokine, in T. cruzi-elicited myocarditis in rats. Holtzman rats were given intramuscularly cardiotoxin and the CCL4/MIP-1beta DNA-containing plasmid (100microg) was delivered in this muscular site four times. Fourteen days after last immunization, animals were inoculated with a myotropical CL-Brener T. cruzi clone. Peak of parasitism was observed at day 15 after infection, preceding the peak of myocardial inflammation at day 20. Myocarditis was still intense at day 30, but the inflammatory infiltrates showed a more focal distribution. The expression of CCL2/MCP-1 and CCL4/MIP-1beta correlated closely with the kinetics of myocardial inflammation. The CCL4/MIP-1beta DNA vaccine induced an increase of the levels of the anti-CCL4/MIP-1beta observed in T. cruzi-infected animals. This was associated with an exacerbation of myocardial inflammation and fibrosis, although alterations in parasitemia and myocardial parasitism were not observed. Our data suggest that CCL4/MIP-1beta plays a role in preventing excessive inflammation and pathology rather than in controlling parasite replication.  相似文献   

8.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

9.
IL-13 is a potent stimulator of inflammation and tissue remodeling that plays a key role in the pathogenesis of a wide variety of human disorders. To further understand these responses, studies were undertaken to define the role(s) of the chemokine C10/CCL6 in the pathogenesis of IL-13-induced alterations in the murine lung. IL-13 was a very potent stimulator of C10/CCL6 mRNA and protein, and IL-13-induced inflammation, alveolar remodeling, and compliance alterations were markedly ameliorated after C10/CCL6 neutralization. Treatment with anti-C10/CCL6 decreased the levels of mRNA encoding matrix metalloproteinase-2 (MMP-2), MMP-9, and tissue inhibitor of metalloproteinase-4 (TIMP-4) in lungs from wild-type mice. C10/CCL6 neutralization also decreased the ability of IL-13 to stimulate the production of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha, MMP-2, MMP-9, and cathepsins-K, -L, and -S and the ability of IL-13 to inhibit alpha1-antitrypsin. In accord with these findings, a targeted null mutation of CCR1, a putative C10/CCL6 receptor, also decreased IL-13-induced inflammation and alveolar remodeling and caused alterations in chemokines, proteases, and antiproteases comparable to those seen after C10/CCL6 neutralization. These C10/CCL6 and CCR1 manipulations did not alter the production of transgenic IL-13. These studies demonstrate that IL-13 is a potent stimulator of C10/CCL6 and highlight the importance of C10/CCL6 and signaling via CCR1 in the pathogenesis of the IL-13-induced pulmonary phenotype. They also describe a C10/CCL6 target gene cascade in which C10/CCL6 induction is required for optimal IL-13 stimulation of selected chemokines (monocyte chemoattractant protein-1 and MIP-1alpha) and proteases (MMP-2, MMP-9, and cathepsins-K, -L, and -S) and the inhibition of alpha1-antitrypsin.  相似文献   

10.
To investigate the relevance of gelatinase-B (matrix metalloproteinase 9, MMP-9) in gouty arthritis (GA), we tested the occurrence of MMP-9 in GA patients and cell culture system. Gelatinolytic activity in the synovial fluid (SF) of patients with different kinds of arthritis was assessed by gelatin zymography. A predominant 92-kDa MMP-9 gelatinolytic activity was evident in rheumatoid arthritis (RA) and GA samples, but no activity was observed in osteoarthritis (OA) samples. Among the 53 SF samples (9 RA, 24 GA, and 20 OA) analyzed for MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1) antigen levels by ELISA, MMP-9 antigen levels were elevated tenfold in GA SF compared with OA SF. In addition, GA synovial tissue extracts revealed elevated levels of MMP-9 expression as compared to OA tissue extracts by Western blot and RT-PCR analysis. Immunohistochemical studies demonstrated that MMP-9 immunoreactivity was more intense in GA than in OA synovial tissues. Furthermore, macrophages activation by gouty crystals in vitro was examined. Crystals stimulated MMP-9 gene expression in macrophage cell line and such stimulation was suppressed by PD98059. These findings suggest that the abnormal production of MMP-9 by macrophages is a reflection of the pathological conditions in joints of patients with GA, and that the activation of MMP-9 in the joint is known to play an important role in joint disease.  相似文献   

11.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

12.
The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response. Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti-rat RANTES had no effect on the development of lung injury. In animals pretreated intratracheally with blocking Abs to MCP-1, RANTES, or MIP-1 beta, significant reductions in the bronchoalveolar lavage content of these chemokines occurred, suggesting that these Abs had reached their targets. Conversely, exogenously MIP-1 beta, but not RANTES or MCP-1, caused enhancement of the lung vascular leak. These data indicate that MIP-1 beta, but not MCP-1 or RANTES, plays an important role in intrapulmonary recruitment of neutrophils and development of lung injury in the model employed. The findings suggest that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.  相似文献   

13.

Background

In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β.

Methodology/Principal Findings

The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13.

Conclusions/Significance

Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine in cartilage whose impairment impacts on OA pathogenesis.  相似文献   

14.
1,25 Dihydroxy vitamin D(3) (vitamin D(3)) is an immunomodulator and its deficiency has been associated with susceptibility to tuberculosis. We have studied the immunoregulatory role of vitamin D(3) on various chemokine expression in pulmonary tuberculosis. Peripheral blood mononuclear cells obtained from 21 pulmonary tuberculosis (PTB) patients and 24 healthy controls (HCs) were cultured for 48h with culture filtrate antigen (CFA) of Mycobacterium tuberculosis with or without vitamin D(3) at a concentration 1×10(-7)M. The relative mRNA expression of monocyte chemoattractant protein-1 (MCP-1, CCL2), macrophage inflammatory protein-1α (MIP-1α, CCL3), macrophage inflammatory protein-1β (MIP-1β, CCL4), and regulated upon-activation, normal T cell-expressed and secreted (RANTES, CCL5) and IFN-γ inducible protein-10 (IP-10, CXCL10) chemokines were estimated from 48h old macrophages using real-time polymerase chain reaction (RT-PCR). The culture supernatants were used to estimate the various chemokines including monokine induced by IFN-γ (MIG, CXCL9) levels using cytometric bead array. In HCs, vitamin D(3) significantly suppressed the MCP-1 mRNA expression of CFA stimulated cells (p=0.0027), while no such effect was observed in PTB patients. Vitamin D(3) showed no significant effect on MIP-1α, MIP-1β and RANTES in both the study groups. The CFA induced IP-10 mRNA and protein expression was significantly suppressed by vitamin D(3) in both the study groups (p<0.05). A similar suppressive effect of vitamin D(3) was observed with MIG protein in healthy controls (p=0.0029) and a trend towards a suppression was observed in PTB patients. The suppressive effect of vitamin D(3) is more prominent in CXC chemokines rather than CC chemokines. This suggests that vitamin D(3) may down regulate the recruitment and activation of T-cells through CXC chemokines at the site of infection and may act as a potential anti-inflammatory agent.  相似文献   

15.
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking, and is characterized by an increase in inflammatory cells in the airways and pulmonary tissue. The chemokine receptor CCR6 and its ligand MIP-3alpha/CCL20 may be involved in the recruitment of these inflammatory cells. To investigate the role of CCR6 in the pathogenesis of COPD, we analyzed the inflammatory responses of CCR6 knockout (KO) and wild-type mice upon cigarette smoke (CS) exposure. Both subacute and chronic exposure to CS induced an increase in cells of the innate and adaptive immune system in the bronchoalveolar lavage, both in CCR6 KO and wild-type mice. However, the accumulation of dendritic cells, neutrophils, and T lymphocytes, which express CCR6, was significantly attenuated in the CCR6 KO mice, compared with their wild-type littermates. In the lung tissue of CCR6 KO mice, there was an impaired increase in dendritic cells, activated CD8(+) T lymphocytes, and granulocytes. Moreover, this attenuated inflammatory response in CCR6 KO mice offered a partial protection against pulmonary emphysema, which correlated with an impaired production of MMP-12. Importantly, protein levels of MIP-3alpha/CCL20, the only chemokine ligand of the CCR6 receptor, and MCP-1/CCL2 were significantly increased upon CS exposure in wild-type, but not in CCR6 KO mice. In contrast, CCR6 deficiency had no effect on the development of airway wall remodeling upon chronic CS exposure. These results indicate that the interaction of CCR6 with its ligand MIP-3alpha contributes to the pathogenesis of CS-induced pulmonary inflammation and emphysema in this murine model of COPD.  相似文献   

16.
Certain chemokines possess anti-angiogenic and antibacterial activity, in addition to their ability to recruit leukocytes. Herein, we demonstrate that CXCL9/MIG induces the expression, by a monocytic cell line and peripheral blood mononuclear cells, of a variety of chemokines including CXCL8/IL-8, CCL3/MIP-1α, CCL4/MIP-1β, CCL2/MCP-1 in a pertussis toxin insensitive manner. Similarly, another cationic chemokine CCL20/MIP-3α, but not the non-cationic chemokines CCL2 or CCL3, stimulated monocytic cells to produce substantial amounts of CXCL8 and CCL3. Microarray experiments demonstrated that CXCL9, but not CCL2, induced the expression of hundreds of genes, many of which have known or proposed immunomodulatory functions. Induction of CXCL8 required the p38 and ERK1/2 mitogen-activated protein kinases but not NFκB, JAK-STAT or JNK signaling pathways. These results collectively demonstrate that CXCL9 has immunomodulatory functions that are not mediated through a G-protein coupled receptor and may possess additional roles in host defenses against infection.  相似文献   

17.
Acute pancreatitis (AP) is an inflammatory disease involving the production of different cytokines and chemokines and is characterized by leukocyte infiltration. Because the chemokine receptor CCR5 and its ligands [the CC chemokines CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/regulated upon activation, normal T cell expressed and secreted (RANTES)] regulate leukocyte chemotaxis and activation, we investigated the expression of CCR5 ligands and the role of CCR5 and its ligands in experimental AP in mice. AP was induced by hourly intraperitoneal injections of cerulein in CCR5-deficient (CCR5(-/-)) or wild-type (WT) mice. Induction of AP by cerulein resulted in an early increase of pancreatic CCL2, CCL3, and CCL4 mRNA expression, whereas CCL5 mRNA expression occurred later. CCR5(-/-) mice developed a more severe pancreatic injury than WT mice during cerulein-induced AP, as assessed by a more pronounced increase in serum amylase and lipase levels and by more severe pancreatic edema, inflammatory infiltrates (mainly neutrophils), and necrosis. CCR5(-/-) mice also exhibited increased production of CCL2/MCP-1, CCL3/MIP-1alpha, and CCL4/MIP-1beta during the course of cerulein-induced AP. In vivo simultaneous neutralization of CC chemokines with monoclonal antibodies in CCR5(-/-) mice reduced the severity of cerulein-induced AP, indicating a role of CC chemokines in exacerbating the course of AP in the absence of CCR5. Moreover, simultaneous neutralization of CCR5 ligands in WT mice also reduced the severity of cerulein-induced AP. In conclusion, lack of the chemokine receptor CCR5 exacerbates experimental cerulein-induced AP and leads to increased levels of CC chemokines and a more pronounced pancreatic inflammatory infiltrate, suggesting that CCR5 expression can modulate severity of AP.  相似文献   

18.
The presence of binding sites for the beta chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) has recently been identified on human brain microvessels. We extend these findings in this report to reveal that such sites exemplify characteristics of the recognized major receptors for MCP-1 and MIP-1alpha: CCR2, and CCR1 and CCR5, respectively. Specifically, labeled MCP-1 binding to isolated brain microvessels was inhibited by unlabeled MCP-1 and MCP-3, the latter another CCR2 ligand, but not by MIP-1alpha. Inhibition of labeled MIP-1alpha binding was achieved with unlabeled MIP-1alpha and RANTES, the latter a beta chemokine that binds to both CCR1 and CCR5, but not by MCP-1. Labeled MIP-1alpha binding was also antagonized by unlabeled MCP-3, which is also recognized by CCR1, and MIP-1beta, which is a ligand for CCR5. Labeled MCP-1 and MIP-1alpha were further observed to be internalized within the endothelial cells of brain microvessels, following their binding to the microvascular surface at 37 degrees C. Additionally, exposure of microvessels to unlabeled MCP-1 or MIP-1alpha was accompanied by the initial loss and subsequent recovery of surface binding sites for these chemokines, which occurred on a time scale consistent with ligand-induced endocytosis and recycling. These collective features bear striking similarity to those that characterize interactions of MCP-1 and MIP-1alpha with their receptors on leukocytes and underscore the concept of cognate chemokine receptors on brain microvascular endothelium.  相似文献   

19.
The aim of this study was to identify the molecules and pathways involved in the cross-talk between meniscus and synovium that may play a critical role in osteoarthritis (OA) pathophysiology. Samples of synovium and meniscus were collected from patients with early and end-stage OA and cultured alone or cocultured. Cytokines, chemokines, metalloproteases, and their inhibitors were evaluated at the gene and protein levels. The extracellular matrix (ECM) changes were also investigated. In early OA cultures, higher levels of interleukin-6 (IL-6) and IL-8 messenger RNA were expressed by synovium and meniscus in coculture compared with meniscus cultured alone. RANTES release was significantly increased when the two tissues were cocultured compared with meniscus cultured alone. Increased levels of matrix metalloproteinase-3 (MMP-3) and MMP-10 proteins, as well as increased release of glycosaminoglycans and aggrecan CS846 epitope, were observed when synovium was cocultured with meniscus. In end-stage OA cultures, increased levels of IL-8 and monocyte chemoattractant protein-1 (MCP-1) proteins were released in cocultures compared with cultures of meniscus alone. Chemokine (C-C motif) ligand 21 (CCL21) protein release was higher in meniscus cultured alone and in coculture compared with synovium cultured alone. Increased levels of MMP-3 and 10 proteins were observed when tissues were cocultured compared with meniscus cultured alone. Aggrecan CS846 epitope release was increased in cocultures compared with cultures of either tissue cultured alone. Our study showed the production of inflammatory molecules by synovium and meniscus which could trigger inflammatory signals in early OA patients, and induce ECM loss in the progressive and final stages of OA pathology.  相似文献   

20.
Protective immunity to pathogens depends on efficient immune responses adapted to the type of pathogen and the infected tissue. Dendritic cells (DC) play a pivotal role in directing the effector T cell response to either a protective T helper type 1 (Th1) or type 2 (Th2) phenotype. Human monocyte-derived DC can be differentiated into Th1-, Th2- or Th1/Th2-promoting DC in vitro upon activation with microbial compounds or cytokines. Host defence is highly dependent on mobile leucocytes and cell trafficking is largely mediated by the interactions of chemokines with their specific receptors expressed on the surface of leucocytes. The production of chemokines by mature effector DC remains elusive. Here we assess the differential production of both inflammatory and homeostatic chemokines by monocyte-derived mature Th1/Th2-, Th1- or Th2-promoting DC and its regulation in response to CD40 ligation, thereby mimicking local engagement with activated T cells. We show that mature Th1- and Th1/Th2-, but not Th2-promoting DC, selectively express elevated levels of the inflammatory chemokines CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta and CCL5/RANTES, as well as the homeostatic chemokine CCL19/MIP-3beta. CCL21/6Ckine is preferentially expressed by Th2-promoting DC. Production of the Th1-attracting chemokines, CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC, is restricted to Th1-promoting DC. In contrast, expression of Th2-associated chemokines does not strictly correlate with the Th2-promoting DC phenotype, except for CCL22/MDC, which is preferentially expressed by Th2-promoting DC. Because inflammatory chemokines and Th1-associated chemokines are constitutively expressed by mature Th1-promoting DC and CCL22/MDC is constitutively expressed by mature Th2-promoting DC, we propose a novel role for mature DC present in inflamed peripheral tissues in orchestrating the immune response by recruiting appropriate leucocyte populations to the site of pathogen entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号