首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   49篇
  国内免费   2篇
  2019年   9篇
  2018年   11篇
  2016年   11篇
  2015年   19篇
  2014年   27篇
  2013年   34篇
  2012年   36篇
  2011年   29篇
  2010年   17篇
  2009年   13篇
  2008年   24篇
  2007年   24篇
  2006年   21篇
  2005年   21篇
  2004年   19篇
  2003年   22篇
  2002年   19篇
  2001年   24篇
  2000年   16篇
  1999年   17篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   13篇
  1987年   14篇
  1986年   11篇
  1985年   13篇
  1984年   10篇
  1983年   7篇
  1982年   13篇
  1981年   13篇
  1980年   6篇
  1979年   10篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1975年   11篇
  1974年   9篇
  1973年   4篇
  1972年   4篇
  1969年   9篇
  1968年   7篇
  1965年   4篇
排序方式: 共有732条查询结果,搜索用时 31 毫秒
1.
2.
3.
Blood group A glycosphingolipids with slow chromatographic mobilities have been separated systematically with an improved chromatographic procedure, and their structures have been analyzed by application of a panel of monoclonal antibodies defining A determinants carried by type 1, type 2, type 3, and type 4 carbohydrate chains as well as by 1H NMR spectroscopy and methylation analysis. Of several A-active fractions, previously termed Aa, Ab, Ac, and Ad, in decreasing order of thin-layer chromatographic mobility, the third fraction (Ac) was characterized as containing one type 3 chain A component and one type 2 chain A component without branching, which have been termed type 3 chain Ab and nor-Ac, respectively. (Formula: see text). The major component present in the fourth A-active fraction (Ad) was isolated and characterized as a branched type 2 chain glycolipid formerly termed Ac. The major component in the fifth A-active fraction (Ae) was identified as a branched type 2 chain A previously termed Ad. The structures of Ac (n = 1) and Ad (n = 2) are (Formula: see text).  相似文献   
4.
Summary Equivalent-circuit impedance analysis experiments were performed on the urinary bladders of freshwater turtles in order to quantify membrane ionic conductances and areas, and to investigate how changes in these parameters are associated with changes in the rate of proton secretion in this tissue. In all experiments, sodium reabsorption was inhibited thereby unmasking the electrogenic proton secretion process. We report the following: (1) transepithelial impedance is represented exceptionally well by a simple equivalent-circuit model, which results in estimates of the apical and basolateral membrane ionic conductances and capacitances; (2) when sodium transport is inhibited with mucosal amiloride and serosal ouabain, the apical and basolateral membrane conductances and capacitances exhibit a continual decline with time; (3) this decline in the membrane parameters is most likely caused by subtle time-dependent changes in cell volume, resulting in changes in the areas of the apical and basolateral membranes; (4) stable membrane parameters are obtained if the tissue is not treated with ouabain, and if the oncotic pressure of the serosal solution is increased by the addition of 2% albumin; (5) inhibition of proton secretion using acetazolamide in CO2 and HCO 3 -free bathing solutions results in a decrease in the area of the apical membrane, with no significant change in its specific conductance; (6) stimulation of proton transport with CO2 and HCO 3 -containing serosal solution results in an increase in the apical membrane area and specific conductance. These results show that our methods can be used to measure changes in the membrane electrophysiological parameters that are related to changes in the rate of proton transport. Notably, they can be used to quantify in the live tissue, changes in membrane area resulting from changes in the net rates of endocytosis and exocytosis which are postulated to be intimately involved in the regulation of proton transport.  相似文献   
5.
6.
Summary Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.  相似文献   
7.
8.
9.
10.
Cystathionine gamma-synthase catalyses the committed step of de novo methionine biosynthesis in micro-organisms and plants, making the enzyme an attractive target for the design of new antibiotics and herbicides. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum has been solved by Patterson search techniques using the structure of Escherichia coli cystathionine gamma-synthase. The model was refined at 2.9 A resolution to a crystallographic R -factor of 20.1 % (Rfree25.0 %). The physiological substrates of the enzyme, L-homoserine phosphate and L-cysteine, were modelled into the unliganded structure. These complexes support the proposed ping-pong mechanism for catalysis and illustrate the dissimilar substrate specificities of bacterial and plant cystathionine gamma-synthases on a molecular level. The main difference arises from the binding modes of the distal substrate groups (O -acetyl/succinyl versusO -phosphate). Central in fixing the distal phosphate of the plant CGS substrate is an exposed lysine residue that is strictly conserved in plant cystathionine gamma-synthases whereas bacterial enzymes carry a glycine residue at this position. General insight regarding the reaction specificity of transsulphuration enzymes is gained by the comparison to cystathionine beta-lyase from E. coli, indicating the mechanistic importance of a second substrate binding site for L-cysteine which leads to different chemical reaction types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号