首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Invasive non‐native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non‐native species, particularly grasses. Within a grass‐dominated site in leeward Hawaii, we explored the mechanisms by which non‐native Pennisetum setaceum, African fountain grass, limits seedlings of native species. We planted 1,800 seedlings of five native trees, three native shrubs, and two native vines into a factorial field experiment to examine the effects of grass removal (bulldozed vs. clipped plus herbicide vs. control), shade (60% shade vs. full sun), and water (supplemental vs. ambient) on seedling survival, growth, and physiology. Both grass removal and shade independently increased survival and growth, as well as soil moisture. Seedling survival and relative growth rate were also significantly dependent on soil moisture. These results suggest that altering soil moisture may be one of the primary mechanisms by which grasses limit native seedlings. Grass removal increased foliar nitrogen content of seedlings, which resulted in an increase in leaf‐level photosynthesis and intrinsic water use efficiency. Thus in the absence of grasses, native species showed increased productivity and resource acquisition. We conclude that the combination of grass removal and shading may be an effective approach to the restoration of degraded tropical dry forests in Hawaii and other ecologically similar ecosystems.  相似文献   

2.
A study was conducted on a Coastal Plain flatwoods site in Florida to determine the effects of common forestry herbicides on Longleaf pine seedling survival and growth and on the understory vegetation. Following removal of the overstory slash pine, five low‐rate herbicide treatments were applied over the top of planted Longleaf pine seedlings to provide short‐term understory vegetation control and accelerate seedling growth. The objective was to increase Longleaf pine growth by reducing the shrub competition while increasing the herbaceous ground cover. Despite causing reduction in seedling survival over the control treatment, imazapyr (0.21 ae kg/ha) resulted in the highest seedling growth (height and volume). The significant reduction of shrub cover, density, and height by imazapyr was believed to be responsible for the improved seedling growth in this treatment. Both hexazinone (0.56 ai kg/ha) and sulfometuron methyl (0.26 ai kg/ha) + hexazinone (0.56 ai kg/ha) treatments also reduced cover of Runner oak, a major shrub species, but the response was evident only 8 months after treatment. Although sulfometuron methyl (0.26 ai kg/ha) and sulfometuron methyl + hexazinone treatments did not result in any significant change in overall grass, forb, and shrub cover, both treatments resulted in greater Longleaf pine growth compared to the control. None of the herbicides significantly affected the major understory grasses and forbs. Overall, imazapyr provided the best desired results with significant increase in seedling growth and better control of shrub species with no significant effects on grass and other herbaceous species cover.  相似文献   

3.
John L. Maron 《Oecologia》1997,110(2):284-290
Seedlings suffer high mortality in most plant populations, with both competition and herbivory proposed as being important mechanisms causing seedling death. The relative strength of these factors, however, is often unknown. Here I ask how interspecific competition for light and insect herbivory jointly affect seedling survival of bush lupine (Lupinus arboreus), a native shrub common to coastal California. Bush lupine seedlings germinate in grasslands during winter, and throughout spring potentially compete for light with surrounding fast-growing annual grasses. By early summer, after grasses have died, seedlings can be defoliated by a locally abundant caterpillar, the western tussock moth (Orgyia vetusta). I examined the relative importance of competition and insect herbivory on seedling survival in two separate experiments. First, I compared seedling mortality in plots either exposed to or protected from tussock moth larvae. Plants were protected from herbivory by the judicious use of insecticide; control plants were sprayed with water. Tussock moth herbivory resulted in significantly greater (31%) seedling mortality. To determine the effects of interspecific competition for light on seedling survival, I manipulated the density of grass surrounding lupine seedlings. I removed all vegetation surrounding some individuals, and left intact vegetation surrounding others. Reducing competition resulted in a 32% increase in seedling survival from February to June, as well as changes in seedling growth. To determine whether there are interactive effects of competition and herbivory on seedling survival, I enclosed tussock moth larvae on half of all surviving seedlings within each of the two prior competition treatments, comparing growth and survival of defoliated and undefoliated seedlings. Defoliation in June led to an additional 50% mortality for individuals that had grown with competitors through spring, and a 53% additional mortality for seedlings that grew without competitors through spring. Thus, although competition and herbivory both caused substantial seedling mortality, there was no statistical interaction between these factors. Competition-free plants were not less vulnerable to herbivory than plants that previously grew with competitors. Taken together, these experiments indicate that competition and herbivory are both important sources of mortality for bush lupine seedlings. Received: 4 April 1996 / Accepted: 5 November 1996  相似文献   

4.
Under the harsh environmental conditions present in severely overgrazed, semiarid rangelands, facilitator plants offer a promising tool for ecological restoration. This study investigated facilitative effects of Aloe secundiflora—a native drought‐tolerant, unpalatable, thorny shrub—on grass establishment in degraded rangelands in Kenya. We planted native perennial grass seeds adjacent to three neighbor treatments: transplanted mature aloe shrubs, piles of thorn branches that provided similar physical protection to aloes, and control treatments with no facilitator. We monitored grass performance for three growing seasons. During the first growing season, association with aloe shrubs significantly improved seedling survival and plant size of individual grasses, whereas grass survival in thorn treatments was intermediate between aloe and control treatments. At the population level, aloe neighbor treatments were associated with the greatest grass abundance and cover in all three seasons and reproductive output in the second season. Control treatments were associated with the poorest grass performance for all three variables. The findings indicate that planting aloes can improve the effectiveness of grass reseeding for rangeland restoration, exceeding the benefits gained from the more common strategy of using thorn branch piles. The utility of aloes in particular is further enhanced by the economic value of these plants; medicinal sap can be sustainably harvested from aloes planted for restoration.  相似文献   

5.
Abstract

Trifluralin, a pre-emergent herbicide, is widely used in Brazil in the weed grass management in restoration areas. The objective was to evaluate the tolerance of Piptadenia gonoacantha to trifluralin. The treatments had three trifluralin doses (445, 890, and 1335?g a.i. ha?1), applied in pre-sowing, as well as the control, without herbicide. Visual intoxication, seed germination, survival rate, emergence speed index (EMI), mean germination period, seedling height, and diameter, micromorphometric parameters of plant roots collected at 60 d after sowing, root length (RL) and volume, leaf area (LA), leaf numbers, root and shoot dry matter, and fluorescence of chlorophyll a at 30, 45, and 60 d after sowing were analyzed. Visual intoxication values above 50% were observed only with 1335?g a.i. ha?1. The herbicide did not affect seed germination, EMI, average germination period, seedling height, and diameter, root micromorphometric parameters, length, dry matter or root volume, and chlorophyll a fluorescence. The dose 1335?g a.i. ha?1 caused a reduction of 41.5% in survival, 50.3% in the LA, 36.7% in the number of leaves (LN), and 59.8% in the aerial dry mass of seedlings. The trifluralin presents potential for restoration programs of degraded areas with this forest species.  相似文献   

6.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

7.
Many semiarid rangelands in the Great Basin, U.S.A., are shifting dominance to woody species as a consequence of land degradation including intense livestock grazing and fire suppression. Whereas past rehabilitation efforts in Big sagebrush (Artemisia tridentata) steppes removed the shrub and added introduced forage grasses to successfully shift communities from shrublands to grasslands, current consensus is that native species should be included in restoration projects and that retention of some woody plants is desirable. We examined the potential for interseeding grasses into dense shrub communities as a precursor to thinning shrubs and releasing grasses from shrub interference. We compared seedling establishment of the native grass, Bluebunch wheatgrass (Pseudoroegneria spicata), with that of the Eurasia grass, Crested wheatgrass (Agropyron desertorum), in dense Ar. tridentata stands. Shrubs may play an important role as nurse plants for seedling establishment (reduced solar radiation, “island of fertility” effect) but result in highly contrasting light environments and root interference for seedlings. In experimental plots, we examined effects of Ar. tridentata shade levels (0, 40, 70, and 90% reduction of solar radiation) and initial root exclusion (present/absent) on the establishment and growth of P. spicata and Ag. desertorum seedlings. With this design we evaluated the interference effects of Ar. tridentata on the two grasses and identified the most beneficial microsites for grass restoration in Ar. tridentata–dominated communities. We predicted seedling survival and growth to be greater under moderate shade (40% reduction) and limited root competition than under no or strong shade conditions (0 and 90%) and unrestricted root interactions. Fifty to 85% of the P. spicata and Ag. desertorum seedlings survived the dry summer months of 1995 and 1996 and the intervening winter. Neither shading nor root exclusion from Ar. tridentata affected final seedling survival of either species. Seedling biomass of both grass species was negatively affected by initial root interactions with Ar. tridentata. However, the analysis of seedling biomass variability (coefficient of variation) indicated that in all shade and root‐exclusion treatments, some seedlings of both species developed to large individuals to survive in Ar. tridentata–dominated rangelands. Thus, the use of interseeding techniques shows promise for restoring herbaceous species in dense Ar. tridentata stands and should be given further consideration when shrub retention is an important consideration.  相似文献   

8.
Shrub encroachment is a widely observed problem in Southern African savannas. Although the effects of herbivory and grass height on woody species recruitment have been studied individually, little information exists about how these factors interact. In this study seeds and seedlings of the encroaching shrub Dichrostachys cinerea were planted in clipped and unclipped grass plots, with and without large herbivores present. Seed germination, seedling survival and seedling predation were monitored for 8 months. Germination started earlier in plots where herbivores were excluded. Overall, the earlier the seeds germinated, the longer the seedlings survived. Clipping positively affected the number of germinated seeds, seedling growth and survival but effects varied among herbivore exclusion treatments and sites. Invertebrates caused the majority of the seedling damage. We conclude the recruitment of D. cinerea is influenced by the interplay of grass height and herbivory. In this study, the presence of large herbivores early in the wet season, and the absence of simulated grazing later on, affected the regeneration of D. cinerea negatively. However, differences in effects among sites suggest that the mechanisms found here may work differently in other habitats.   相似文献   

9.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

10.
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant–animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30°S), where the effects of the surrounding semiarid matrix and forest patch size (0.1–22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 × 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation–restoration plans.  相似文献   

11.
Using nurse plants to facilitate native plant recruitment in degraded habitats is a common restoration practice across various arid and semiarid environments. Living trees or shrubs are typically considered nurse plants, whereas dead shrubs left in the landscape from prolonged drought are understudied prospective facilitators for native plant recruitment. The interaction between nurse plants and biotic pressures, such as herbivory, on native recruitment is also not well understood in semiarid plant communities. We investigated the effects of facilitation and herbivory on native seedling germination, growth, and survival in the restoration of degraded coastal sage scrub (CSS) habitat. Native shrub seedlings (Artemisia californica and Salvia mellifera) were planted, and native annual species (Amsinckia intermedia, Deinandra fasciculata, Phacelia distans, and Pseudognaphalium californicum) were sown in three Shrub Type treatments (live shrub, dead shrub, and exposed areas), with a nested Cage treatment (no cage and cage) in each Shrub Type treatment. Annual species grew equally well in all Shrub Type treatments; shrub seedlings grew largest in exposed areas. While there was little evidence of facilitation for all species tested, there were strong positive effects of caging on growth and establishment of all species. Caging palatable native species or planting species with anti‐herbivory traits around target plants may be more strategic approaches compared to using nurse plants in restoring degraded CSS after extended drought.  相似文献   

12.
Large areas of North American prairie have been planted with grasses introduced from Eurasia. We examined three strategies (herbicide, tilling, and nitrogen manipulation) for enhancing the establishment of seedlings of native species and suppressing the introduced grasses Agropyron cristatum (crested wheat grass) and Bromus inermis (smooth brome). Plots (5 × 15 m) were subjected to one of three levels of tilling (none, intermediate, complete) and four levels of nitrogen (none, intermediate, high, and sawdust added to immobilize nitrogen). Treatments were applied in a factorial design with twelve treatments and ten replicates. Seeds of 41 native species were drilled into the plots in May 1992. Following the failure of seeds to establish in 1992, a subplot (5 × 13 m) within each main plot was sprayed with the herbicide glyphosate in April 1993. The nitrogen treatments were repeated in Spring 1993. In August 1993, the density of native seedlings in sprayed subplots was 20 times that in unsprayed subplots. Within sprayed subplots, native seedling density and the cover of bare ground decreased significantly with increasing nitrogen availability. Plots receiving sawdust had significantly higher mean cover of bare ground and significantly lower concentrations of soil available nitrogen. Native seedling density was significantly higher in plots receiving the highest intensity of tilling. The responses of native seedlings to all these factors point to the importance of neighbor-free establishment sites as a prerequisite for prairie restoration.  相似文献   

13.
Increasing frequency of drought and high herbivore pressure significantly affect individual grass functions in semiarid regions. Reseeding of degraded rangelands by native grass species has been recommended as a tool for restoration semiarid rangelands. However, how grass species used for reseeding respond to stressors has not been fully explored. We examined biomass allocation and nutrient contents of Cenchrus ciliaris and Chloris gayana in the semiarid Borana rangelands, Ethiopia. We tested clipped mature tufts of the same species for biomass allocation and nutritive values. Further, shifts in rainfall and herbivory were simulated by three irrigation and four clipping treatments, respectively, for newly established grasses in pot and field plot experiments. Aboveground biomass (AGB) significantly declined by up to 75% under increased clipping in mature tufts. In contrast, clipping significantly stimulated up to 152% higher AGB of newly established grasses. Lower irrigation reduced the AGB by 24 and 42% in C. ciliaris and in C. gayana, respectively. Clipping, further, significantly enhanced grass nutrients in grass tufts by up to 82 and 105% in C. ciliaris and C. gayana, respectively. Hence, management should focus on balancing this trade-off in mature grasses for nutritious rangeland production by clipping and storing for later supplemental feeding when grass nutrients drop. Further, young pastures should be moderately clipped/grazed for better establishment and biomass allocation. Additionally, our experiments established the first interactive effect of clipping and irrigation frequencies on the biomass allocation of native grasses in the semiarid Borana rangelands, Ethiopia. Knowledge of these interacting factors is deemed essential for policy makers to enhance productivity of degraded rangelands such as the Borana rangelands.  相似文献   

14.
Invasive species alter ecosystem structure, impact biodiversity, and have significant economic costs. In Oregon's Willamette Valley, invasive grasses Arrhenatherum elatius and Schedonorus arundinaceus alter the dynamics of the phenologically paired interaction between an endangered butterfly, Icaricia icarioides fenderi (Fender's blue), and its larval host plant, Lupinus oreganus (Kincaid's lupine). To test methods to restore this interaction, we established a 3‐year experiment where a post‐emergent grass‐specific herbicide, fluazifop‐p‐butyl, was applied to Fender's blue habitat. Plant community data were recorded throughout the growing season at eight paired plots for 1 year prior to treatment and 3 years during treatment. We asked whether annual application of herbicide could reduce the height of invasive grasses to levels at or beneath the height of Kincaid's lupine racemes throughout the Fender's blue flight season. We hypothesized that native forb species, which are critical nectar sources for Fender's blue, would increase in cover and frequency following the release from competitive dominance of invasive grasses. Grass‐specific herbicide reduced grass height during the flight season of Fender's blue, but with several costs. We found no change in nectar and a suppression of lupine growth in plots in response to experimental herbicide treatment. Each study site had multiple secondary invaders; the long‐term impact of these new invaders is unknown. We suggest that herbicide application results in a net negative effect in the context of Fender's blue habitat restoration. That is, the costs to primary resources for Fender's blue and the influx of secondary invaders may be as problematic as the primary invasion by non‐native grasses.  相似文献   

15.
The effects of tree guards and weed mats on establishment and growth of native tree seedlings, Thick‐leaved oak (Cyclobalanopsis edithiae (Skan) Schott., Fagaceae), planted in an exposed hillside grassland in Hong Kong, were investigated. The natural regeneration of C. edithiae is poor due to a lack of seed dispersal agents and high seed predation, and therefore, this species is often targeted for forest restoration. The experiment lasted for 3.5 years during which the height, basal diameter, and crown diameter of individual seedlings were measured and survivorship recorded. The use of weed mats alone did not have a significant effect, but a combination of tree guards and weed mats led to a significant improvement in establishment, survivorship, and growth of the seedlings during the experimental period. Initially, the guards promoted rapid height growth of the seedlings, although lateral growth and secondary stem thickening were compromised. After the seedlings grew over the tree guards, the basal diameter and crown diameter increased at a notably faster rate. The combined effect of the tree guard and weed mat on the seedling growth pattern was found to be beneficial and contributed to the high survivorship of the seedlings. Comparing the survivorship data and the costs of various treatments, the use of tree guards in combination with the weed mats was demonstrated to be more cost‐effective than planting the seedlings without tree guards or weed mats. The potential for applying the technique in afforestation programs with native tree species for forest restoration in Hong Kong and other tropical regions is discussed.  相似文献   

16.
Ecological restoration in tropical dry forests urgently needs to incorporate experimental evidence to increase effectiveness. The main barriers for tree establishment are adverse microenvironmental conditions and competition with exotic grasses. Therefore, management should address such barriers in order to enhance tree performance. We evaluated the effect of plastic mulching, grass removal, and no management on survival after 2 months and stem volume and canopy size after 2 years and integrated response index (IRI) in plantings of 11 native tree species with different growth rates in pastures near the tropical dry forest of Chamela, Mexico. Results revealed that: (1) initial seedling mortality was minimal in all treatments (8%) and lowest under no management (2%); (2) plastic mulching, but not grass removal, leads to increased size for most species, irrespective of their growth rank; (3) a trade‐off between initial plant survival and size after 2 years occurred due to plastic mulching; and (4) most species showed similar values of the IRI because of high survival, stem volume, or canopy cover. Grass removal decreased early survival of all species and increased stem volume only for one slow‐growing species. The use of plastic mulching increased stem volume for slow‐growing species, whereas fast‐growing species developed larger canopies with that treatment. Effects of grass removal and mulching seem to be very species‐specific and not dependent in growth rank of species, although overall mulching seems to provide better conditions for seedling performance than grass removal alone.  相似文献   

17.
Restoring habitat degraded by invasive species is often a primary focus of conservation strategies, yet few studies investigate the effects of invasive species control on multiple at‐risk taxa. Selective herbicides are increasingly used because they can selectively reduce aggressive invasive plant species with the aim of minimizing effects on other taxa within the habitat. We conducted a four‐year experiment to test how annual application of grass‐specific herbicide affected the demography on Fender's blue butterfly (Icaricia icarioides fenderi) and Kincaid's lupine (Lupinus oreganus), two federally protected species which persist in highly degraded prairie remnants in western Oregon, USA. Effects of herbicide application were transitory for the butterfly; reduction of invasive grasses increased fecundity and led to higher annual population growth (λ) at one of two conservation areas in the first season. There were no detectable differences in λ in subsequent seasons—suggesting that treatments caused neither extensive harm nor extensive benefit to the butterfly population. For the lupine, there were no detectable differences in leaf and flower abundance between control and herbicide treatments. However, greater seed production in herbicide plots in the first and third seasons suggests that lupines in herbicide‐treated plots have greater potential reproductive success. While treatments do not have a long‐term benefit to annual population growth for the butterfly, increasing reproductive success of the threatened plant may justify integrating this strategy into restoration plans. Considering the impact of restoration practices on the demography of multiple at‐risk taxa within a community is critical to effective recovery strategies.  相似文献   

18.
Many herbaceous meadows are dominated by competitive non‐native grasses and subject to ungulate herbivory, ecological processes that shift the proportional biomass of plant groups in the community. Predicting the outcome of restoration is complicated because herbivory and competition can interact. We examined the relationship between herbivory by native black‐tailed deer and domestic sheep and dominance of non‐native grasses in Garry oak meadows, one of North America's most endangered habitat types. A 3‐year factorial experiment tested the effects of mowing and fencing on plant community biomass, categorized into eight groups by geographic origin (native/non‐native), growth form (annual/perennial), and plant type (forb/grass). To test if the rarity of native plant groups was related to herbivory, we estimated ungulate foraging preferences for each plant group. Mowing and fencing treatments interacted for annual and perennial non‐native grasses. Dominance was shifted from non‐native to native grasses only when both mowing and fencing were applied. Fencing increased the total biomass, whereas mowing had no overall effect; however, fencing alone did not affect any individual plant group. Mowing shifted dominance from grasses to forbs, although both native and non‐native forbs benefited from the increased light availability. We also noted that herbivore fecal pellet densities were greatest in the spring, which coincided with the peak season of their preferred plant group, native perennial forbs. Overall, applying both mowing and fencing was the most effective restoration treatment to increase native plant groups and biomass.  相似文献   

19.
The reestablishment of riparian forest is often viewed as “best management practice” for restoring stream ecosystems to a quasi‐natural state and preventing non‐point source contaminants from entering them. We experimentally assessed seedling survivorship and growth of Quercus palustris (pin oak), Q. rubra (red oak), Q. alba (white oak), Betula nigra (river birch), and Acer rubrum (red maple) in response to root‐stock type (bare root vs. containerized), herbivore protection (tree shelters), and weed control (herbicide, mowing, tree mats) over a 4‐year period at two riparian sites near the Chester River in Maryland, U.S.A. We started with tree‐stocking densities of 988/ha (400/ac) in the experimental plots and considered 50% survivorship (i.e., a density of 494/ha [200/ac] at crown closure) to be an “acceptable or minimum” target for riparian restoration. Results after four growing seasons show no significant difference in survivorship and growth between bare‐root and containerized seedlings when averaged across all species and treatments. Overall survivorship and growth was significantly higher for sheltered versus unsheltered seedlings (49% and 77.6 cm vs. 12.1% and 3.6 cm, respectively) when averaged across all species and weed control treatments. Each of the five test species exhibited significantly higher 4‐year growth with shelter protection when averaged across all other treatments, and all species but river birch had significantly higher survivorship in shelters during the period. Seedlings protected from weeds by herbicide exhibited significantly higher survivorship and growth than seedlings in all other weed‐control treatments when averaged across all species and shelter treatments. The highest 4‐year levels of survivorship/growth, when averaged across all species, was associated with seedlings protected by shelters and herbicide (88.8%/125.7cm) and by shelters and weed mats (57.5%/73.5 cm). Thus, only plots where seedlings were assisted by a combination of tree shelters and either herbicide or tree mats exhibited an “acceptable or minimum” rate of survivorship (i.e.,>50%) for riparian forest restoration in the region. Moreover, the combined growth and survivorship data suggest that crown closure over most small streams in need of restoration in the region can be achieved most rapidly (i.e., 15 years or less) by protecting seedlings with tree shelters and controlling competing vegetation with herbicides.  相似文献   

20.
The goal of restoration is to accelerate ecosystem recovery, but in ecosystems that naturally regenerate rapidly restoration techniques need to be selected carefully to facilitate rather than impede natural recovery. We compared the effects of five restoration techniques, such as plowing the soil, removing grasses, adding forest litter, seeding, and planting nursery‐growing seedlings, on the regeneration of seasonal deciduous forest trees in four abandoned pastures in central Brazil. We monitored all woody stems immediately prior to treatments and again 14 months after the treatments. We recorded an average of 16,663 tree stems per hectare and a total of 83 species before implementing treatments. Planting strongly increased species richness; adding litter and seeding had weaker positive effects on richness; and plowing and grass removal had no effect. Plowing substantially reduced the density of naturally established stems. Despite the high survival of planted seedlings, stem density in planting treatments did not change because the tractor and digging holes to plant seedlings caused mortality of naturally regenerating seedlings. Tree stems grew more in the grass release plots than in the control plots. Our results suggest that early succession of seasonal deciduous forest in pastures in the region studied does not need to be stimulated once the perturbation is stopped and that intensive restoration efforts may actually slow recovery. We recommend only enrichment planting of seedlings that are not able to resprout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号