首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prescribed spring burning often contributes to a predominance of C4 grasses and low forb abundance and is impractical at many sites, especially near development. We tested raking after mowing as an alternative to prescribed burning in a reconstructed Minnesota prairie. We also tested mowing without raking as a possible means of maintaining prairie communities. Frequency, flowering stem abundance, and cover were measured for all plant species and native functional groups (C4 grasses, C3 graminoids, forbs, legumes, and annual or biennial forbs). Mowing alone did not differ from the control in its effect on any functional groups of plants. Round‐headed bush clover (Lespedeza capitata), a legume, and Black‐eyed Susan (Rudbeckia hirta), a biennial, increased in frequency with treatments that removed biomass (i.e., fire or raking), but they did not have significantly more flowering stems. Thus, new plants established well from seed, whereas the vitality of mature plants did not change. Raking had similar effects to burning on most functional groups, although flowering stems of C4 grasses were significantly more abundant after fire than after raking. Burning reduced some C3 forbs and grasses and favored the dominance of C4 grasses. Therefore, raking after mowing in the spring provides an alternative to prescribed burning that has many of the same positive aspects as fire but does not promote aggressive C4 grasses to the same extent.  相似文献   

2.
Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double-edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned-unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central-western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.  相似文献   

3.
Abstract. Control of invasive plants is a key element of conservation and restoration efforts. We report results from a five‐year field experiment in western Oregon, USA that evaluates the effects of different mowing regimes on the non‐native and invasive perennial grass Arrhenatherum elatius, the native perennial prairie grasses Danthonia californica and Festuca roemeri, and groups of other native and non‐native grasses and forbs. Eight treatments were designed to test hypotheses about the role of mowing height and time of application on the plant community. Differences among treatments emerged only after two or three years of treatment. This delay in response reinforces the need for long‐term studies. Annual mowing was most effective at reducing Arrhenatherum cover and flowering when applied in late spring or early summer, the time of Arrhenatherum flowering and expected maximum above‐ground allocation. Double mowing and mowing at 15 cm were more effective in reducing Arrhenatherum cover than were single mowing and mowing at 50 cm. All treatments increased the cover and flowering of Danthonia. Statistical model analysis showed that increases in cover and flowering of the native grass Danthonia were caused by its release from suppression by Arrhenatherum. Fouryears of the most effective treatment, mowing at 15 cm in late spring, converted an Arrhenatherum‐dominated site to a prairie dominated by native grasses. This is one of the few documented cases of pest plant control causing an increase in native plant abundance. These results show that mowing, properly applied, can be an effective tool for restoring degraded, Arrhenatherum‐dormnated prairies.  相似文献   

4.
Shrub steppe communities with depleted perennial herbaceous understories often need to be restored to increase resilience and resistance. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) steppe plant communities to reduce sagebrush dominance and restore native herbaceous vegetation, but success has been limited and hampered by increases in exotic annuals. Seeding native bunchgrasses after mowing may accelerate recovery and limit exotics. We compared mowing followed by drill‐seeding native bunchgrasses to mowing and an untreated control at five sites in southeastern Oregon over a 4‐year period. Mowing and seeding bunchgrasses increased bunchgrass density; however, bunchgrass cover did not differ among treatments. Exotic annuals increased with mowing whether or not post‐mowing seeding occurred. Mowing, whether or not seeding occurred, also reduced biological soil crusts. Longer term evaluation is needed to determine if seeded bunchgrasses will increase enough to suppress exotic annuals. Seeded bunchgrasses may have been limited by increases in exotic annuals. Though restoration of sagebrush communities with degraded understories is needed, we do not recommend mowing and seeding native bunchgrasses because this treatment produced mixed results that may lower the resilience and resistance of these communities. Before this method is applied, research is needed to increase our understanding of how to improve establishment of seeded native bunchgrasses. Alternatively, restoration practitioners may need to apply treatments to control exotic annuals and repeatedly seed native bunchgrasses.  相似文献   

5.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

6.
Cheatgrass (Bromus tectorum) and other exotic winter‐active plants can be persistent invaders in native grasslands, growing earlier in the spring than native plants and pre‐empting soil resources. Effective management strategies are needed to reduce their abundance while encouraging the reestablishment of desirable native plants. In this 4‐year study, we investigated whether mowing and seeding with native perennial grasses could limit growth of exotic winter‐actives, and benefit growth of native plants in an invaded grassland in Colorado, United States. We established a split‐plot experiment in October 2008 with 3 mowing treatments: control, spring‐mowed, and spring/summer‐mowed (late spring, mid‐summer, and late summer), and 3 within‐plot seeding treatments: control, added B. tectorum seeds, and added native grass seeds. Cover of plant species and aboveground biomass were measured for 3 years. In March and June of 2010, 2011, and March of 2012, B. tectorum and other winter‐annual grasses were half as abundant in both mowing treatments as in control plots; however, cover of non‐native winter‐active forbs increased 2‐fold in spring‐mowed plots and almost 3‐fold in spring/summer‐mowed plots relative to controls. These patterns remained consistent 1 year after termination of treatments. Native cool‐season grasses were most abundant in spring‐mowed plots, and least abundant in control plots. There was higher cover of native warm‐season grasses in spring/summer‐mowed plots than in control plots in July 2011 and 2012. The timing of management can have strong effects on plant community dynamics in grasslands, and this experiment indicates that adaptive management can target the temporal niche of undesirable invasive species.  相似文献   

7.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

8.
To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non‐native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine the effect of soil moisture and light availability on plant community invasion resistance. The annual plant communities were unable to resist invasion by C. solstitialis. In the native winter annual forb community, senescence in late spring increased light penetration (>75%) to the soil surface, allowing seeded C. solstitialis to quickly establish and dominate the plots. In addition, native annual forbs utilized only shallow soil moisture, whereas C. solstitialis used shallow and deep soil moisture. In communities containing native perennials, only Elymus glaucus established well and eventually dominated the plots. During the first 2 years of establishment, water use pattern of perennial communities was similar to native annual forbs and resistance to invasion was associated with reduced light availability during the critical stages of C. solstitialis establishment. In later years, however, water use pattern of perennial grass communities was similar or greater than C. solstitialis‐dominated plots. These results show that Central Valley grasslands that include E. glaucus resist C. solstitialis invasion by a combination of light suppression and soil water competition. Spatiotemporal resource utilization patterns, and not just functional similarity, should be considered when developing restoration strategies to resist invasion by many non‐native species.  相似文献   

9.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

10.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

11.
Questions: How do arbuscular mycorrhiza and earthworms affect the structure and diversity of a ruderal plant community? Is the establishment success of newcomer plants enhanced by these soil organisms and their interactions? Methods: We grew a native ruderal plant community composed of different functional groups (grasses, legumes and forbs) in the presence and absence of arbuscular mycorrhizal fungi (AMF) and endogeic earthworms in mesocosms. We introduced seeds of five, mainly exotic, plant species from the same functional groups after a disturbance simulating mowing. The effects of the soil organisms on the native ruderal plant community and seedling establishment of the newcomer plants were assessed. Results: After disturbance, the total above‐ground regrowth of the native plant community was not affected by the soil organisms. However, AMF increased plant diversity and shoot biomass of forbs, but decreased shoot biomass of grasses of the native plant community. Earthworms led to a reduction in total root biomass. Establishment of the introduced newcomer plants increased in the presence of AMF and earthworms. Especially, seedling establishment of the introduced non‐native legume Lupinus polyphyllus and the native forb Plantago lanceolata was promoted in the presence of AMF and earthworms, respectively. The endogeic earthworms gained more weight in the presence of AMF and led to increased extraradical AMF hyphal length in soil. However, earthworms did not seem to modify the effect of AMF on the plant community. Conclusion: The present study shows the importance of mutualistic soil organisms in mediating the establishment success of newcomer plants in a native plant community. Mutualistic soil organisms lead to changes in the structure and diversity of the native plant community and might promote newcomer plants, including exotic species.  相似文献   

12.
Abstract. Livestock overgrazing and stream incision in the western USA often result in encroachment and dominance of Artemisia tridentata ssp. tridentata (Big sagebrush) in riparian areas that formerly supported meadows. To define the alternative states and thresholds for these ecosystems, we conducted a restoration experiment that included sites with high, intermediate or low water tables. We used a paired‐plot approach in which one plot on each site was burned and seeded with native grasses and forbs typical of naturally occurring dry meadow and Artemisia/Leymus cinereus ecological types, while adjacent unburned plots served as controls. Sites with high and intermediate water tables had greater initial abundances of perennial grasses typical of dry meadows, such as Leymus triticoides and Poa secunda ssp. juncifolia, and these species increased after the burn. In contrast, sites with low water tables were dominated by annual forbs such as Chenopo‐dium album and Descurainia pinnata after the burn. Biomass increased progressively from 1997 to 1999 on burned plots, while controls showed little change. Burning effects were microsite specific, with former Artemisia microsites exhibiting lower biomass than interspaces initially, but similar or higher biomass by the third year. Establishment of seeded species was low and species composition was determined largely by pre‐burn vegetation. Artemisia dominated sites with high water tables appear to represent an alternative state of the dry meadow ecological type, while sites with low water table sites have crossed an abiotic threshold governed by water tables and represent a new ecological type. Burning is an effective tool for restoring relatively high water table sites, but low water table sites will require burning and seeding with species adapted to more xeric conditions.  相似文献   

13.
Conservation of grassland biodiversity is a key issue in the EU agro-biodiversity policy. We assessed the effects of yearly mowing on target forb biomass in years with contrasting precipitation (2006–2007) in mountain fen and dry-mesophilous hay meadows in NE-Hungary. We hypothesised: (i) Species richness and biomass of target forbs is higher in mown than in abandoned stands. (ii) Mowing has more an effect on the biomass of target forbs, graminoids and litter than precipitation.  相似文献   

14.
Many early attempts at tallgrass prairie reconstruction failed to achieve the high species diversity of remnant prairies, and instead consist primarily of C4 grasses. We hypothesized that frequent mowing of established prairie grasses could create sufficient gaps in the aboveground and belowground environment to allow for the establishment of native forbs from seed. We studied forb seedling establishment in a 25‐year‐old prairie planting in northern Iowa that was dominated by native warm‐season grasses. In winter 1999, 23 species of native forbs were broadcast into the recently burned sod at a rate of 350 viable seeds/m2. Treatment plots were mowed weekly for either one or two growing seasons, and control plots were unmowed. Mowed plots had greater light availability than controls, especially when warm‐season grasses began to flower. Overwinter seedling mortality was 3% in mowed treatments compared to 29% in the controls. Forbs in mowed plots had significantly greater root and shoot mass than those in control plots in the first and second growing seasons but were not significantly more abundant. By the fourth growing season, however, forbs were twice as abundant in the mowed treatments. No lasting negative impacts of frequent mowing on the grass population were observed. Mowing a second year influenced species composition but did not change total seedling establishment. Experimental evidence is consistent with the idea that mowing reduced competition for light from large established grasses, allowing forb seedlings the opportunity to reach sufficient size to establish, survive, and flower in the second and subsequent years.  相似文献   

15.
Insects and ungulates co‐occur in grasslands, often feeding on the same plants at the same time and potentially having interactive effects on plant growth. Further, ungulate–insect interactions may differ between native ungulate guilds and domesticated cattle. Despite the prevalence of insects and ungulates in native grasslands, experiments simultaneously manipulating the densities of both these groups are rare. Using large, replicated paddocks, as well as insecticide application, we restricted access to vegetation by each group of herbivores. We also manipulated the species identity of the ungulate assemblage, allowing us to determine whether there are differential effects between native ungulate guilds (bison, elk and deer) and cattle on plant biomass. We found interactive effects of insect and ungulate herbivores on root growth. When insects were suppressed, both native ungulates and cattle caused an approximate doubling of root biomass. However, this stimulatory effect of ungulate grazing was eliminated when insects were also present. In contrast, neither insects nor ungulates had significant effects on shoot biomass at these densities. As a result, the dominant effects of above‐ground herbivory was on belowground plant growth. We suggest the effects of insect and ungulate assemblages on root biomass appear important in regulating primary production in this grassland and may account for some of the contradictory plant responses to ungulate herbivory in the literature.  相似文献   

16.
2014—2018年8月在内蒙古锡林郭勒盟毛登牧场大针茅典型草原,以围封为对照,设置2、5和8 cm 3个刈割留茬高度,研究刈割留茬高度对群落结构及稳定性的影响。结果表明: 群落中共出现15科23属27种植物;优势种为大针茅、知母、羊草及糙隐子草,累计相对重要值为76.1%。多年生杂类草15种,一、二年生植物5种,多年生丛生禾草和灌木半灌木植物各有3种,多年生根茎禾草有1种。大针茅等处于群落上层;知母、羊草等植物处于群落中层;糙隐子草、刺穗藜、猪毛菜等植物处于群落底层。刈割造成大针茅及多年生丛生禾草相对重要值降低,使得糙隐子草、刺穗藜、猪毛菜及一、二年生植物相对重要值增加。留茬2 cm降低羊草相对重要值,而留茬5、8 cm使其增加;留茬5 cm增加知母相对重要值,而留茬2、8 cm使其降低;留茬8 cm降低杂类草相对重要值,而留茬2、5 cm使其增加。物种及功能群多样性年度间差异显著。总体上,刈割对物种丰富度无显著影响,对其物种多样性影响较小,但对功能群多样性存在一定影响。表明在刈割过程中,群落各功能群存在一定的补偿作用,使得群落保持相对稳定。刈割使群落稳定性增加,留茬5和8 cm时群落稳定性较大;留茬5 cm时群落变异性较大,而留茬8 cm时最小。留茬8 cm时群落稳定性高且变异性小,能促进群落长期稳定。  相似文献   

17.
Many of the remaining patches of untilled (native) prairie in the Northern Glaciated Plains of North America are heavily invaded by the cool‐season grasses, Bromus inermis and Poa pratensis. However, the native vegetation in these patches contains many warm‐season species. This difference in phenology can be used to benefit restoration. We conducted an experiment to examine the efficacy of restoration treatments (mowing and prescribed fire) applied early in the growing season for consecutive years to decrease cool‐season invasive plant biomass without impacting the native warm‐season species. Our treatments were successful at significantly decreasing invasive cool‐season plant biomass and increasing native warm‐season plant biomass. No differences between treatments (mowing and prescribed fire) were found. Results suggest that incorporating differences in phenology between target and nontarget species into management may increase restoration success.  相似文献   

18.
Exotic plant invasions are especially problematic because reestablishment of native perennial vegetation is rarely successful. It may be more appropriate to treat exotic plant infestations that still have some remaining native vegetation. We evaluated this restoration strategy by measuring the effects of spring burning, fall burning, fall applied imazapic, spring burning with fall applied imazapic, and fall burning with fall applied imazapic on the exotic annual grass, medusahead (Taeniatherum caput‐medusae (L.) Nevski), and native vegetation at six sites in Oregon for 2 years post‐treatment. Medusahead infestations included in this study had some residual native perennial bunchgrasses and forbs. Burning followed by imazapic application provided the best control of medusahead and resulted in the greatest increases in native perennial vegetation. However, imazapic application decreased native annual forb cover the first year post‐treatment and density the first and second year post‐treatment. The spring burn followed by imazapic application produced an almost 2‐fold increase in plant species diversity compared to the control. The fall burn followed by imazapic application also increased diversity compared to the control. Results of this study indicate that native plants can be promoted in medusahead invasions; however, responses vary by plant functional group and treatment. Our results compared to previous research suggest that restoration of plant communities invaded by exotic annual grass may be more successful if efforts focus on areas with some residual native perennial vegetation. Thus, invasive plant infestations with some native vegetation remaining should receive priority for restoration efforts over near monocultures of invasive plant species.  相似文献   

19.
Questions: Are traits related to the performance of plant species in restoration? Are the relationships between traits and performance consistent across the functional groups of annual forbs, perennial forbs and grasses? Do the relationships between traits and performance depend on neighboring functional groups? Location: A former agricultural field, being restored to native upland prairie, in the Willamette Valley of western Oregon, USA. Methods: Twenty‐eight native species, representing three functional groups, were sown in seven different combinations. Eleven functional traits were measured from plants in the laboratory and in the field. Correlations between individual traits and performance variables were measured and regression techniques used to determine which sets of traits were most strongly related to performance. Results: Sets of traits explained up to 56% of variation in cover, and up to 48% of variation in establishment frequency. The relationships between traits and performance were influenced by functional group identity; the functional group identity of neighboring species also influenced species' cover and the relationships between traits and cover. Species' establishment rate in monoculture was the trait most strongly correlated to both establishment and cover in mixtures. In multi‐trait models, annual forb functional group identity was strongly related to establishment in mixtures, and height, leaf weight ratio at 7 d and seed mass were strongly related to cover. Conclusions: Multiple‐trait models should be a useful way of predicting the performance of species prior to sowing in restoration. The functional group identity of each species and the other species being sown may need to be taken into account when making predictions.  相似文献   

20.
Many semi-arid shrublands in the western US have experienced invasion by a suite of exotic grasses and forbs that have altered community structure and function. The effect of the exotic grasses in this area has been studied, but little is known about how exotic forbs influence the plant community. A 3-year experiment in southern California coastal sage scrub (CSS) now dominated by exotic grasses was done to investigate the influence of both exotic grasses (mainly Bromus spp.) and exotic forbs (mainly Erodium spp.) on a restoration seeding (9 species, including grasses, forbs, and shrubs). Experimental plots were weeded to remove one, both, or neither group of exotic species and seeded at a high rate with a mix of native species. Abundance of all species varied with precipitation levels, but seeded species established best when both groups of exotic species were removed. The removal of exotic grasses resulted in an increase in exotic and native forb cover, while removal of exotic forbs led to an increase in exotic grass cover and, at least in one year, a decrease in native forb cover. In former CSS now converted to exotic annual grassland, a competitive hierarchy between exotic grasses and forbs may prevent native forbs from more fully occupying the habitat when either group of exotics is removed. This apparent competitive hierarchy may interact with yearly variation in precipitation levels to limit restoration seedings of CSS/exotic grassland communities. Therefore, management of CSS and exotic grassland in southern California and similar areas must consider control of both exotic grasses and forbs when restoration is attempted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号