首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Beraprost sodium, a prostaglandin I2 analogue, has been recently reported to exhibit beneficial effects on atherosclerosis in patients with diabetes. However, effects of beraprost sodium on microvascular injury in diabetes remain to be elucidated. We have previously shown that advanced glycation end products (AGE), senescent macroproteins formed at an accelerated rate in diabetes, caused pericyte apoptosis, thus being involved in the pathogenesis of the early phase of diabetic retinopathy. In this study, we examined whether beraprost sodium can protect against AGE-induced cytotoxicity in cultured retinal pericytes. MATERIALS AND METHODS: Intracellular formation of reactive oxygen species (ROS) was detected using a fluorescent probe. DNA synthesis was determined by measuring [3H]thymidine incorporation into cells. Apoptosis was determined by DNA fragmentations, which were quantitatively measured in an enzyme-linked immunosorbent assay. RESULTS: Beraprost sodium or forskolin, a stimulator of adenylate cyclase, was found to significantly inhibit AGE-induced ROS generation and the subsequent decrease in DNA synthesis in pericytes. Both treatments significantly prevented AGE-induced apoptotic cell death in pericytes. Furthermore, beraprost sodium was found to down-regulate AGE receptor mRNA levels in pericytes. CONCLUSION: The results demonstrated that cyclic AMP-elevating agents such as beraprost sodium and forskolin protected retinal pericytes from AGE-induced cytotoxicity through its anti-oxidative properties. Our present study suggests that beraprost sodium may have therapeutic potentials in treatment of patients with early diabetic retinopathy.  相似文献   

2.
Apoptosis appears to be the death mechanism of pericyte loss observed in diabetic retinopathy. We have previously shown that advanced glycation end-products (AGE-MGX) induce apoptosis of retinal pericytes in culture associated with diacylglycerol (DAG)/ceramide production. In the present study, we investigated possible caspase involvement in this process. Bovine retinal pericytes (BRP) were cultured with AGE-MGX and apoptosis examined after annexin V staining. Effects of peptidic inhibitors of caspases were determined on DAG/ceramide production and apoptosis. Pan-caspase inhibitor z-VAD-fmk (50 microM) was able to inhibit both DAG/ceramide production and apoptosis, whereas caspase-3-like inhibitor z-DEVD-fmk (50 microM) or caspase-9 inhibitor z-LEHD-fmk (50 microM) was only active on apoptosis. This differential effect strongly suggests involvement of initiator caspase(s) upstream and effector caspase(s) downstream DAG/ceramide production in AGE-mediated apoptosis. Pericyte treatment with caspase-8 inhibitor z-IETD-fmk (50 microM) did not protect cells against AGE-induced apoptosis and we failed to detect caspase-8 in pericytes by immunoblotting assay. Interestingly, one inhibitor of caspase-10 and related caspases z-AEVD-fmk (50 microM) inhibited both AGE-MGX-induced apoptosis and DAG/ceramide formation in pericytes. Cleavage of caspase-10 precursor into its active subunits was demonstrated by immunoblotting assay in pericytes incubated with AGE-MGX. These results strongly suggest that caspase-10, but not caspase-8, might be involved in the early phase of AGE-induced pericyte apoptosis, in contrast to caspase-9 and -3-like enzymes involved after DAG/ceramide production. This finding may provide new therapeutic perspectives for early treatment in diabetic retinopathy.  相似文献   

3.
Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis, suggesting that loss of PEDF contributes to proliferative diabetic retinopathy. However, the role of PEDF against retinal vascular hyperpermeability remains to be elucidated. We investigated here whether and how PEDF could inhibit the advanced glycation end product (AGE) signaling to vascular hyperpermeability. Intravenous administration of AGEs to normal rats not only increased retinal vascular permeability by stimulating vascular endothelial growth factor (VEGF) expression but also decreased retinal PEDF levels. Simultaneous treatments with PEDF inhibited the AGE-elicited VEGF-mediated permeability by down-regulating mRNA levels of p22(phox) and gp91(phox), membrane components of NADPH oxidase, and subsequently decreasing retinal levels of an oxidative stress marker, 8-hydroxydeoxyguanosine. PEDF also inhibited the AGE-induced vascular hyperpermeability evaluated by transendothelial electrical resistance by suppressing VEGF expression. Furthermore, PEDF decreased reactive oxygen species (ROS) generation in AGE-exposed endothelial cells by suppressing NADPH oxidase activity via down-regulation of mRNA levels of p22(PHOX) and gp91(PHOX). This led to blockade of the AGE-elicited Ras activation and NF-kappaB-dependent VEGF gene induction in endothelial cells. These results indicate that the central mechanism for PEDF inhibition of the AGE signaling to vascular permeability is by suppression of NADPH oxidase-mediated ROS generation and subsequent VEGF expression. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.  相似文献   

4.
Advanced glycation end product (AGE)-their receptor (RAGE) and angiotensin II (AII) are implicated in diabetic retinopathy. However, a crosstalk between the two is not fully understood. In vivo, AGE injection stimulated RAGE expression in the eye of spontaneously hypertensive rats, which was blocked by an AII-type 1 receptor blocker, telmisartan. In vitro, AII-type 1 receptor-mediated reactive oxygen species generation elicited RAGE gene expression in pericytes through NF-kappaB activation. Further, AII augmented AGE-induced pericyte apoptosis, the earliest hallmark of diabetic retinopathy. Our present study may implicate a crosstalk between AGE-RAGE system and AII in diabetic retinopathy.  相似文献   

5.
The polyol pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH). There is a growing body of evidence to suggest that acceleration of the polyol pathway is implicated in the pathogenesis of diabetic vascular complications. However, a functional role remains to be elucidated for SDH in the development and progression of diabetic retinopathy. In this study, cultured bovine retinal capillary pericytes were used to investigate the effects of SDH overexpression on glucose toxicity. High glucose modestly increased reactive oxygen species (ROS) generation, decreased DNA synthesis, and up-regulated vascular endothelial growth factor (VEGF) mRNA levels in cultured pericytes. SDH overexpression was found to significantly stimulate ROS generation in high glucose-exposed pericytes and subsequently potentiate the cytopathic effects of glucose. Fidarestat, a newly developed AR inhibitor, and N-acetylcysteine, an antioxidant, completely prevented these deleterious effects of SDH overexpression on pericytes. Furthermore, fidarestat administration was found to significantly prevent vascular hyperpermeability, the characteristic changes of the early phase of diabetic retinopathy, in streptozotocin-induced diabetic rats. Our present results suggest that SDH-mediated conversion of sorbitol to fructose and the resultant ROS generation may play an active role in the pathogenesis of diabetic retinopathy. Blockage of sorbitol formation by fidarestat could be a promising therapeutic strategy for the treatment of early phase of diabetic retinopathy.  相似文献   

6.
There is now increasing evidence suggesting that non-enzymatic glycation (NEG) of proteins is involved in the pathogenesis of chronic diabetic complication. In this study we demonstrate that chronic exposure to high-glucose concentration leads to intracellular protein glycation in cultured bovine retinal capillary pericytes and endothelial cells. The level of intracellular protein glycation, as measured using a competitive enzyme-linked immunoabsorbant assay (ELISA), was found to increase in both pericytes and endothelial cells as function of time. As expected products of NEG were only detected when the Schiff base and the Amadori products were chemically reduced to glucitollysine by sodium borohydride. Despite the accumulation of early glycation products on cellular proteins there was no further rearrangement reaction into advanced glycation endproducts (AGEs), even after 12 days of incubation in high-glucose medium. Immunofluorescence microscopy demonstrated that the monoclonal antibody reacting with glucitollysine stains the cytoplasm of both pericytes and endothelial cells in a finely punctate pattern. Further studies using Western blot analysis suggested that a number of cellular proteins, including smooth muscle actin in pericytes, become rapidly glycated. The results from this in vitro study suggest that excessive accumulation of early products of non-enzymatic glycation in pericytes and endothelial cells may play an important role in the pathogenesis of diabetic retinopathy.  相似文献   

7.
Retinopathy is the most common microvascular diabetes complication and represents a major threat to the eyesight. The aim of this study was to address the role of pro- and anti-angiogenic molecules in diabetic retinopathy in the aqueous humor of the eye. Aqueous humor was collected at cataract surgery from 19 diabetic patients and from 13 age- and sex-matched normoglycemic controls. Levels of pro-angiogenic vascular endothelial growth factor (VEGF) and angiogenic inhibitor pigment epithelium-derived factor (PEDF) were determined. Angiogenic activity of the aqueous humor was quantified by measuring its effect on the migration of capillary endothelial cells. In the aqueous fluid, VEGF levels were increased in diabetics (mean values: 501 vs. 367 pg/ml; p = 0.05), compared to controls. PEDF was found to be decreased in diabetics (mean values: 2080 vs. 5780 ng/ml; p = 0.04) compared to controls. In seven diabetic patients with proliferative retinopathy, the most profound finding was a significant decrease of the PEDF level (mean value: 237 ng/ml), whereas VEGF levels were comparable to diabetic patients without proliferation (mean value: 3153; p = 0.003). Angiogenic activity in samples of patients from the control group was generally inhibitory due to PEDF, and inhibition was blocked by neutralizing antibodies to PEDF. Likewise, in diabetics without proliferation, angiogenic activity was also blocked by antibodies to PEDF. We will demonstrate here that the level of the natural ocular anti-angiogenic agent PEDF is inversely associated with proliferative retinopathy. PEDF is an important negative regulator of angiogenic activity of aqueous humor. Our data may have implications for the development of novel regimens for diabetic retinopathy.  相似文献   

8.
To investigate the effect of protein kinase C (PKC)-ζ inhibition on vascular leakage in diabetic retinopathy, streptozotocin-induced diabetic mice were intravitreously injected with siPKC-ζ. According to the fluorescein angiography of the retinal vessels, suppression of PKC-ζ effectively attenuated vascular leakage in diabetic retina. Further evaluation on the retina with western blot analysis and immunohistochemistry revealed accompanying restoration of tight junction proteins on retinal vessels. As two major contributors to vascular leakage in diabetic retinopathy, vascular endothelial growth factor (VEGF) and advanced glycation end products (AGEs) were investigated on the tight junction protein expression in endothelial cells. Inhibition of PKC-ζ attenuated VEGF-induced decrease of tight junction proteins and accompanying hyperpermeability in human retinal microvascular endothelial cells (HRMECs). PKC-ζ inhibition also attenuated AGE-induced decrease of tight junction proteins in HRMECs. Our findings suggest that inhibition of PKC-ζ could be an alternative treatment option for compromised blood-retinal barrier in diabetic retinopathy.  相似文献   

9.
Chen BH  Jiang DY  Tang LS 《Life sciences》2006,79(11):1040-1048
One of the histopathologic hallmarks of early diabetic retinopathy is the selective loss of pericytes. Evidences suggest that the pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the effect of advanced glycation end products (AGEs) on apoptotic cell death in bovine retinal pericytes (BRPs). After incubation of BRPs with 0.47, 1.88, 7.5, 30 microM of AGE-bovine serum albumin (BSA) for 4 days, we assayed the pericytes apoptosis by FACS (fluorescence activated cell sorting), and further measured the signaling pathway involved. The results showed that AGE-BSA could induce significantly the apoptosis of BRPs in a dose-dependent manner compared with controls, associated with an increase in intracellular malondialdehyde level and caspase-3 activity; a decrease in intracellular catalase, SOD activities and Bcl-2/Bax ratio. SOD and selective caspase-3 inhibitor Z-DEVD-fmk can inhibit pericyte apoptosis induced by AGE-BSA. These data suggest that the pericyte loss in diabetic retinopathy involves an apoptotic process, and that elevated AGE observed in diabetes may cause apoptosis in BRPs through an oxidative stress mechanism. The decreased Bcl-2/Bax ratio and activation of caspase-3 are associated with apoptotic process.  相似文献   

10.
糖尿病视网膜病变的基因治疗   总被引:1,自引:1,他引:0  
糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病的主要并发症之一,大量的研究表明DR早期表现为视网膜神经细胞退化性改变,晚期出现新生血管及增殖膜,目前尚没有有效的治疗方法,严重危害患者视力。基因治疗为探索DR的治疗方法提供了新的手段,本文就目前DR的基因治疗研究现状和进展作一综述。  相似文献   

11.
Pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, thus suggesting that loss of PEDF is involved in angiogenic eye diseases such as proliferative diabetic retinopathy. Angiogenesis is required for tumor growth and progression as well. We, along with others, have recently found that PEDF could inhibit growth of melanoma and hepatocellular carcinoma in nude mice through its anti-angiogenic effects on tumor endothelial cells. However, the possibility of the direct effect of PEDF on tumor cells has remained. In this study, we investigated the effects of PEDF on growth and vascular endothelial growth factor (VEGF) expression in MG63 human cultured osteosarcoma cells. PEDF decreased viable cell number as well as DNA synthesis in MG63 cells in a dose-dependent manner. Furthermore, PEDF was found to increase caspase-3/7 activity and to subsequently induce apoptotic cell death in MG63 cells. PEDF also inhibited VEGF expression in MG63 cells at both mRNA and protein levels. Our present study provides novel beneficial aspects of PEDF on osteosarcoma cells; one is induction of apoptotic cell death of tumor cells, and the other is the suppression of VEGF expression, which would lead to inhibition of tumor angiogenesis. PEDF therefore might be a promising therapeutic agent for treatment of patients with osteosarcoma.  相似文献   

12.
13.
Recent data indicate that the oxidative stress plays an important role in the pathogenesis of diabetes and its complications such as retinopathy, nephropathy and accelerated atherosclerosis. In diabetic retinopathy, it was demonstrated a selective loss of pericytes accompanied by capillary basement membrane thickening, increased permeability and neovascularization. This study was designed to investigate the role of diabetic conditions such as high glucose, AGE-Lysine, and angiotensin II in the modulation of antioxidant enzymes activities, glutathione level and reactive oxygen species (ROS) production in pericytes. The activity of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total glutathione (GSH) was measured spectrophotometrically. The production of ROS was detected by spectrofluorimetry and fluorescence microscopy after loading the cells with 2'-7' dichlorofluoresceine diacetate; as positive control H2O2 was used. Intracellular calcium was determined using Fura 2 AM assay. The results showed that the cells cultured in high glucose alone, do not exhibit major changes in the antioxidant enzyme activities. The presence of AGE-Lys or Ang II induced the increase of SOD activity. Their combination decreased significantly GPx activity and GSH level. A three times increase in ROS production and a significant impairment of intracellular calcium homeostasis was detected in cells cultured in the presence of the three pro-diabetic agents used. In conclusion, our data indicate that diabetic conditions induce in pericytes: (i) an increase of ROS and SOD activity, (ii) a decrease in GPx activity and GSH level, (iii) a major perturbation of the intracellular calcium homeostasis. The data may explain the structural and functional abnormalities of pericytes characteristic for diabetic retinopathy.  相似文献   

14.
Loss of pericytes from the capillary wall is a hallmark of diabetic retinopathy, however, the pathogenic significance of this phenomenon is unclear. In previous mouse gene knockout models leading to pericyte deficiency, prenatal lethality has so far precluded analysis of postnatal consequences in the retina. We now report that endothelium-restricted ablation of platelet-derived growth factor-B generates viable mice with extensive inter- and intra-individual variation in the density of pericytes throughout the CNS. We found a strong inverse correlation between pericyte density and the formation of a range of retinal microvascular abnormalities strongly reminiscent of those seen in diabetic humans. Proliferative retinopathy invariably developed when pericyte density was <50% of normal. Our data suggest that a reduction of the pericyte density is sufficient to cause retinopathy in mice, implying that pericyte loss may also be a causal pathogenic event in human diabetic retinopathy.  相似文献   

15.
Loss of retinal pericytes is the initial deficit in the early stage of diabetic retinopathy. Glycated albumin (GA) forms under hyperglycemic conditions and exists in the retinal blood vessels of diabetic patients with retinopathy. In this study, using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction test, we investigated whether GA induces cytotoxicity in cultured bovine retinal pericytes, and whether the antioxidants, l-ascorbic acid, Trolox, and probucol, provide any protection from GA-mediated cytotoxicity. GA induced pericyte death in a dose-dependent manner. With increasing time, GA-induced cytotoxicity also increased despite no strict time dependence. Furthermore, this cell death was found to be mediated both by apoptosis, which was confirmed by apoptosis-specific fluorescent staining of nuclei and cell membranes, and mitochondrial damage, as elucidated by electron microscopy. All three antioxidants used in this study partially protected against GA-induced pericyte death, suggesting that oxidative stress plays a role in GA-induced pericyte death. The results indicate that GA induces cell death in cultured bovine retinal pericytes, and that certain antioxidants may reduce this cytotoxicity.  相似文献   

16.
Increased vascular permeability is an inciting event in many vascular complications including diabetic retinopathy. We have previously reported that pigment epithelium-derived factor (PEDF) is able to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis through a novel γ-secretase-dependent pathway. In this study, we asked whether inhibition of VEGF-induced permeability by PEDF is also γ-secretase-mediated and to dissect the potential mechanisms involved. Vascular permeability was assessed in vitro by measuring transendothelial resistance and paracellular permeability to dextran and in vivo by following leakage of intravenous FITC-labelled albumin into the retina in the presence or absence of VEGF and PEDF in varying combinations. Experiments were undertaken in the presence or absence of a γ-secretase inhibitor. To assess junctional integrity immunohistochemistry for the adherens junction (AJ) proteins, VE-cadherin and β-catenin, and the tight junction (TJ) protein, claudin-5 was undertaken using cultured cells and flat mount retinas. Protein expression and the association between AJ proteins, VEGF receptors (VEGFRs) and γ-secretase constituents were determined by immunoprecipitation and Western Blot analysis. In selected experiments the effect of hypoxia on junctional integrity was also assessed. PEDF inhibition of VEGF-induced permeability, both in cultured microvascular endothelial cell monolayers and in vivo in the mouse retinal vasculature, is mediated by γ-secretase. PEDF acted by a) preventing dissociation of AJ and TJ proteins and b) regulating both the association of VEGF receptors with AJ proteins and the subsequent phosphorylation of the AJ proteins, VE-cadherin and β-catenin. Association of γ-secretase with AJ proteins appears to be critical in the regulation of vascular permeability. Although hypoxia increased VEGFR expression there was a significant dissociation of VEGFR from AJ proteins. In conclusion, PEDF regulates VEGF-induced vascular permeability via a novel γ-secretase dependent pathway and targeting downstream effectors of PEDF action may represent a promising therapeutic strategy for preventing or ameliorating increased vascular permeability.  相似文献   

17.
The anti-angiogenic activity of pigment epithelium-derived factor (PEDF) has recently been discovered on the basis of its inhibition of ischemia-induced retinal neovascularization in an animal model of retinopathy of the premature. Moreover PEDF inhibits the migration and proliferation of various endothelial cells maintained in culture with FGF(2). Since vascular endothelial growth factor (VEGF) is the main angiogenic factor expressed in hypervascularized retinas, we investigated the functions of PEDF on retinal endothelial cells whose angiogenic phenotype is controlled or not by long term exposure to VEGF as observed in human pathologies such as diabetic retinopathy. Here, we observed that PEDF exerts opposite effects on endothelial cells depending on their phenotype. We determined that when PEDF inhibits endothelial cell growth, it inhibits VEGF-induced MAPK activation. However, in endothelial cells cultured with VEGF, PEDF has a synergistic action on cell proliferation with VEGF, and this corresponds to increased MAPK activation.  相似文献   

18.
19.
One of the earliest changes observed in retinal microvessels in diabetic retinopathy is the selective loss of intramural pericytes. We tested the hypothesis that AGE might be involved in the disappearance of retinal pericytes by apoptosis and further investigated the signaling pathway leading to cell death. Chronic exposure of pericytes to methylglyoxal-modified bovine serum albumin (AGE-BSA) (3 microM) leads to a 3-fold increase of apoptosis (8.9 +/- 1.1%), associated with an increase in cellular ceramide (185 +/- 12%) and diacylglycerol (194 +/- 9%) levels. Ceramide formation was almost inhibited (95%) by an acidic sphingomyelinase inhibitor, desipramine (0.3 microM). Dual inhibition of ceramide (95%) and diacylglycerol (80%) production was observed with a phosphatidylcholine-phospholipase C inhibitor, D609 (9.4 microM). Taken together, these results suggest activation of phosphatidylcholine-phospholipase C coupled to acidic sphingomyelinase. However, both inhibitors only partially protected pericytes against apoptosis, suggesting another apoptotic pathway independent of diacylglycerol/ceramide production. Treatments with various antioxidants completely inhibited pericyte apoptosis, suggesting oxidative stress induction during this apoptotic process. Inhibition of diacylglycerol/ceramide production by N-acetyl-L-cysteine suggests that oxidative stress acts upstream of the two metabolic pathways. AGE treated with metal chelators were also able to induce pericyte apoptosis, suggesting a specific effect of AGE on intracellular oxidative stress independent of redox-active metal ions bound to AGE. In conclusion, these results identify new biochemical targets involved in pericyte loss, which can provide new therapeutic perspectives in diabetic retinopathy.  相似文献   

20.
Diabetic retinopathy is one of the main microvascular complications of diabetes and remains one of the leading causes of blindness worldwide. Recent studies have revealed an important role of inflammatory and proangiogenic high mobility group 1 (HMGB-1) cytokine in diabetic retinopathy. To elucidate cellular mechanisms of HMGB-1 activity in the retina, we performed this study. The histological features of diabetic retinopathy include loss of blood-vessel pericytes and endothelial cells, as well as abnormal new blood vessel growth. To establish the role of HMGB-1 in vulnerability of endothelial cells and pericytes, cultures of these cells, or co-cultures with glial cells, were treated with HMGB-1 and assessed for survival after 24 hours. The expression levels of the cytokines, chemokines, and cell adhesion molecules in glial and endothelial cells were tested by quantitative RT-PCR to evaluate changes in these cells after HMGB-1 treatment. Animal models of neovascularization were also used to study the role of HMGB-1 in the retina. We report that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate death of endothelial cells. We also found that HMGB-1 affects endothelial cell activity. However, we did not observe a difference in the levels of neovascularization between HMGB-1-treated eyes compared to the control eyes, nor in the levels of proangiogenic cytokine VEGF-A expression between glial cells treated with HMGB-1 and control cells. Our data also indicate that HMGB-1 is not involved in retinal neovascularization in the oxygen-induced retinopathy model. Thus, our data suggest that retinal pericyte and endothelial injury and death in diabetic retinopathy may be due to HMGB-1-induced cytotoxic activity of glial cells as well as the direct effect of HMGB-1 on endothelial cells. At the same time, our findings indicate that HMGB-1 plays an insignificant role in retinal and choroidal neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号