首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apoptosis appears to be the death mechanism of pericyte loss observed in diabetic retinopathy. We have previously shown that advanced glycation end-products (AGE-MGX) induce apoptosis of retinal pericytes in culture associated with diacylglycerol (DAG)/ceramide production. In the present study, we investigated possible caspase involvement in this process. Bovine retinal pericytes (BRP) were cultured with AGE-MGX and apoptosis examined after annexin V staining. Effects of peptidic inhibitors of caspases were determined on DAG/ceramide production and apoptosis. Pan-caspase inhibitor z-VAD-fmk (50 microM) was able to inhibit both DAG/ceramide production and apoptosis, whereas caspase-3-like inhibitor z-DEVD-fmk (50 microM) or caspase-9 inhibitor z-LEHD-fmk (50 microM) was only active on apoptosis. This differential effect strongly suggests involvement of initiator caspase(s) upstream and effector caspase(s) downstream DAG/ceramide production in AGE-mediated apoptosis. Pericyte treatment with caspase-8 inhibitor z-IETD-fmk (50 microM) did not protect cells against AGE-induced apoptosis and we failed to detect caspase-8 in pericytes by immunoblotting assay. Interestingly, one inhibitor of caspase-10 and related caspases z-AEVD-fmk (50 microM) inhibited both AGE-MGX-induced apoptosis and DAG/ceramide formation in pericytes. Cleavage of caspase-10 precursor into its active subunits was demonstrated by immunoblotting assay in pericytes incubated with AGE-MGX. These results strongly suggest that caspase-10, but not caspase-8, might be involved in the early phase of AGE-induced pericyte apoptosis, in contrast to caspase-9 and -3-like enzymes involved after DAG/ceramide production. This finding may provide new therapeutic perspectives for early treatment in diabetic retinopathy.  相似文献   

2.
Chen BH  Jiang DY  Tang LS 《Life sciences》2006,79(11):1040-1048
One of the histopathologic hallmarks of early diabetic retinopathy is the selective loss of pericytes. Evidences suggest that the pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the effect of advanced glycation end products (AGEs) on apoptotic cell death in bovine retinal pericytes (BRPs). After incubation of BRPs with 0.47, 1.88, 7.5, 30 microM of AGE-bovine serum albumin (BSA) for 4 days, we assayed the pericytes apoptosis by FACS (fluorescence activated cell sorting), and further measured the signaling pathway involved. The results showed that AGE-BSA could induce significantly the apoptosis of BRPs in a dose-dependent manner compared with controls, associated with an increase in intracellular malondialdehyde level and caspase-3 activity; a decrease in intracellular catalase, SOD activities and Bcl-2/Bax ratio. SOD and selective caspase-3 inhibitor Z-DEVD-fmk can inhibit pericyte apoptosis induced by AGE-BSA. These data suggest that the pericyte loss in diabetic retinopathy involves an apoptotic process, and that elevated AGE observed in diabetes may cause apoptosis in BRPs through an oxidative stress mechanism. The decreased Bcl-2/Bax ratio and activation of caspase-3 are associated with apoptotic process.  相似文献   

3.
The influence of advanced glycation end products (AGEs) on apoptotic cell death and vascular endothelial growth factor (VEGF) gene expression in cultured bovine retinal pericytes was investigated. When pericytes were incubated with three immunochemically distinct AGEs, which were prepared in vitro by incubating bovine serum albumin with glucose, glyceraldehyde, or glycolaldehyde, apoptotic cell death and DNA ladder formation were significantly induced. The cytopathic effects of glyceraldehyde- or glycolaldehyde-derived AGEs were significantly enhanced in AGE receptor-transfected pericytes. Furthermore, all of these AGEs were found to upregulate the secretory forms of VEGF mRNA levels in retinal pericytes. These results suggest that AGEs disturbed retinal microvascular homeostasis by inducing pericyte apoptosis and VEGF overproduction and thus were involved in the pathogenesis of early phase diabetic retinopathy.  相似文献   

4.
Loss of retinal pericytes is the initial deficit in the early stage of diabetic retinopathy. Glycated albumin (GA) forms under hyperglycemic conditions and exists in the retinal blood vessels of diabetic patients with retinopathy. In this study, using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction test, we investigated whether GA induces cytotoxicity in cultured bovine retinal pericytes, and whether the antioxidants, l-ascorbic acid, Trolox, and probucol, provide any protection from GA-mediated cytotoxicity. GA induced pericyte death in a dose-dependent manner. With increasing time, GA-induced cytotoxicity also increased despite no strict time dependence. Furthermore, this cell death was found to be mediated both by apoptosis, which was confirmed by apoptosis-specific fluorescent staining of nuclei and cell membranes, and mitochondrial damage, as elucidated by electron microscopy. All three antioxidants used in this study partially protected against GA-induced pericyte death, suggesting that oxidative stress plays a role in GA-induced pericyte death. The results indicate that GA induces cell death in cultured bovine retinal pericytes, and that certain antioxidants may reduce this cytotoxicity.  相似文献   

5.
6.
Pigment epithelium-derived factor (PEDF) has recently been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, suggesting that loss of PEDF is involved in the pathogenesis of proliferative diabetic retinopathy. However, a protective role for PEDF in pericyte loss in early diabetic retinopathy remains to be elucidated. In this study, we investigated whether PEDF proteins could protect against advanced glycation end product (AGE)-induced injury in retinal pericytes. Ligand blot analysis revealed that pericytes possessed a membrane protein with binding affinity for PEDF. PEDF proteins were found to significantly inhibit AGE-induced reactive oxygen species (ROS) generation and the subsequent decrease in DNA synthesis and apoptotic cell death in pericytes. Further, PEDF proteins completely restored the down-regulation of bcl-2 gene expression in AGE-exposed pericytes. The results demonstrated that PEDF proteins protected cultured pericytes from AGE-induced cytotoxicity through its anti-oxidative properties. Our present study suggests that substitution of PEDF proteins may be a promising strategy in treatment of patients with early diabetic retinopathy.  相似文献   

7.
BACKGROUND: Beraprost sodium, a prostaglandin I2 analogue, has been recently reported to exhibit beneficial effects on atherosclerosis in patients with diabetes. However, effects of beraprost sodium on microvascular injury in diabetes remain to be elucidated. We have previously shown that advanced glycation end products (AGE), senescent macroproteins formed at an accelerated rate in diabetes, caused pericyte apoptosis, thus being involved in the pathogenesis of the early phase of diabetic retinopathy. In this study, we examined whether beraprost sodium can protect against AGE-induced cytotoxicity in cultured retinal pericytes. MATERIALS AND METHODS: Intracellular formation of reactive oxygen species (ROS) was detected using a fluorescent probe. DNA synthesis was determined by measuring [3H]thymidine incorporation into cells. Apoptosis was determined by DNA fragmentations, which were quantitatively measured in an enzyme-linked immunosorbent assay. RESULTS: Beraprost sodium or forskolin, a stimulator of adenylate cyclase, was found to significantly inhibit AGE-induced ROS generation and the subsequent decrease in DNA synthesis in pericytes. Both treatments significantly prevented AGE-induced apoptotic cell death in pericytes. Furthermore, beraprost sodium was found to down-regulate AGE receptor mRNA levels in pericytes. CONCLUSION: The results demonstrated that cyclic AMP-elevating agents such as beraprost sodium and forskolin protected retinal pericytes from AGE-induced cytotoxicity through its anti-oxidative properties. Our present study suggests that beraprost sodium may have therapeutic potentials in treatment of patients with early diabetic retinopathy.  相似文献   

8.
Vascular pathologies induced by ischemia/reperfusion involve the production of reactive oxygen species (ROS) that in part cause tissue injury. The production of ROS that occurs upon reperfusion activates specific second messenger pathways. In diabetic retinopathy there is a characteristic loss of the microvascular pericyte. Pericytes are more sensitive than endothelial cells to low concentrations of ROS, such as hydrogen peroxide (H(2)O(2)) when tested in vitro. Whether the pericyte loss is due to toxic cell death triggered by the noxious H(2)O(2) or apoptosis, due to activation of specific second messenger pathways, is unknown. During apoptosis, a cell's nucleus and cytoplasm condense, the cell becomes fragmented, and ultimately forms apoptotic bodies. It is generally assumed that apoptosis depends on nuclear signaling, but cytoplasmic morphological processes are not well described. We find that exposing cultured retinal pericytes to 100 microM H(2)O(2) for 30 min leads to myosin heavy chain translocation from the cytosol to the cytoskeleton and a significant decrease in cell surface area. Pericyte death follows within 60-120 min. Exposing cells to 150 mJ/cm(2) ultraviolet radiation, an alternate free radical generating system, also causes pericyte myosin translocation and apoptosis. Proteolytic cleavage of actin is not observed in pericyte apoptosis. 3-aminobenzamide, a pharmacological inhibitor of the cleavage and activation of the DNA-repairing enzyme poly (ADP-ribose) polymerase (PARP) inhibits pericyte apoptosis, and prevents myosin translocation. Deferoxamine, an iron chelator known to interfere with free radical generation, also inhibits pericyte myosin translocation, contractility, and cell death. Myosin translocation to the cytoskeleton may be an early step in assembly of a competent contractile apparatus, which is involved in apoptotic cell condensation. These results suggest that pericyte loss associated with increased free radical production in diabetic retina may be by an apoptotic phenomenon.  相似文献   

9.
BACKGROUND: Recent observations in the EURODIAB Complications Study demonstrated that markers of insulin resistance are strong risk factors for retinopathy incidence in patients with diabetes. However, the molecular mechanism underlying this remains to be elucidated. In this study, we investigated the influence of palmitate, a major saturated free fatty acid in plasma, on the apoptotic cell death of cultured microvascular endothelial cells (EC) and retinal pericytes. MATERIALS AND METHODS: The intracellular formation of reactive oxygen species (ROS) was detected using the fluorescent probe CM-H(2)DCFDA. DNA synthesis was determined by measuring [(3) H]-thymidine incorporation into cells. DNA fragmentations of EC were quantitatively analyzed in an enzyme-linked immunosorbent assay, and DNA laddering was evaluated on agarose gel electrophoresis. RESULTS: Palmitate increased ROS generation in microvascular EC. Furthermore, palmitate significantly inhibited DNA synthesis and induced apoptotic cell death in EC, which were completely prevented by an antioxidant, N-acetylcysteine. Palmitate up-regulated pericyte mRNA levels of a receptor for advanced glycation end products (AGE), and thereby potentiated the apoptotic effects of AGE on pericytes. CONCLUSIONS: The results suggest that palmitate could induce apoptotic cell death in microvascular EC and pericytes through the overgeneration of intracellular ROS, and thus be involved in the development of diabetic retinopathy.  相似文献   

10.
11.
Advanced glycation end product (AGE)-their receptor (RAGE) and angiotensin II (AII) are implicated in diabetic retinopathy. However, a crosstalk between the two is not fully understood. In vivo, AGE injection stimulated RAGE expression in the eye of spontaneously hypertensive rats, which was blocked by an AII-type 1 receptor blocker, telmisartan. In vitro, AII-type 1 receptor-mediated reactive oxygen species generation elicited RAGE gene expression in pericytes through NF-kappaB activation. Further, AII augmented AGE-induced pericyte apoptosis, the earliest hallmark of diabetic retinopathy. Our present study may implicate a crosstalk between AGE-RAGE system and AII in diabetic retinopathy.  相似文献   

12.
AimsHyperglycemia-induced oxidative stress is implicated in pericyte apoptosis seen in diabetic retinopathy. The six mammalian Peroxiredoxins (PRDXs) comprise a novel family of antioxidative proteins that negatively regulate oxidative stress-induced apoptosis by controlling reactive oxygen species (ROS) levels.Main methodsSprague–Dawley rats were used to detect the retinal expressions of PRDXs1–6. Pig pericytes cultured in high-glucose medium were used to monitor the protective effect of PRDX5 and 6 against high-glucose-associated change. Recombinant PRDX5 and 6 proteins were linked to the Trans-Activating Transduction (TAT) domain from HIV-1 TAT protein for their efficient delivery into cells/tissues.Key findingsWe found higher expression of PRDX5 and 6 mRNAs and PRDX5 and 6 proteins in retina than the other Prdxs (Prdx1–4). Western blotting affirmed the intracellular presence of TAT-linked proteins and revealed the efficient transduction of TAT-HA-PRDX5 and 6 in these cells. Extrinsic supply of TAT-HA-PRDX5 and 6 proteins inhibited the oxidative stress-induced DNA damage after high-glucose exposure in pig pericytes. The cell survival and apoptosis assay revealed that extrinsic supply of TAT-HA-PRDX5 and 6 proteins was responsible for inhibiting hyperglycemia-induced pericyte apoptosis.SignificanceResults suggest that delivery of PRDX5 and 6 might protect hyperglycemia-induced pericyte loss to inhibit oxidative stress.  相似文献   

13.
J Kim  CS Kim  E Sohn  YM Lee  K Jo  JS Kim 《PloS one》2012,7(8):e43591
KIOM-79 is an herbal mixture of parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix and Euphorbiae radix. In the present study, we determined the efficacy and possible mechanism of KIOM-79 on the advanced glycation end product (AGE)-modified bovine serum albumin (BSA)-induced apoptosis of cultured bovine retinal pericytes and rat retinal pericytes in Zucker diabetic fatty (ZDF) rats. Seven-week-old male ZDF rats were treated with KIOM-79 (50 mg/kg body weight) once a day orally for 13 weeks. KIOM-79 significantly inhibited pericyte apoptosis which were induced by the AGE-BSA treatment. The KIOM-79 treatment markedly suppressed the activation of nuclear factor-kappaB (NF-κB) through the inhibition of inhibitory κB kinase complex. In addition, the oral administration of KIOM-79 inhibited the changes in retinal vasculature (vascular hyperpermeability, acellular capillary). KIOM-79 strongly inhibited pericyte apoptosis, NF-κB activation and the expression of pro-apoptotic Bax and tumor necrosis factor-α. Our results suggest that KIOM-79 may exert inhibitory effects on AGE-induced pericyte apoptosis by blocking NF-κB activation, thereby ameliorating retinal microvascular dysfunction.  相似文献   

14.
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5 mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24 h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.  相似文献   

15.
Nitric oxide and reactive oxygen species play a critical role in photoreceptor apoptosis. However, the exact molecular mechanisms triggered by oxidative stress in photoreceptor cell death remain undefined. Here, we demonstrate that the sphingolipid ceramide is the key mediator of oxidative stress-induced apoptosis in 661W retinal photoreceptor cells. Treatment of 661W cells with the nitric oxide donor, sodium nitroprusside, activates acid sphingomyelinase. As a result, sphingomyelin is hydrolysed, which leads to an increase in the concentration of ceramide. We also show that ceramide is responsible for the activation of the mitochondrial apoptotic pathway in 661W photoreceptor cells and subsequent activation of the caspase cascade. Furthermore, we show for the first time that ceramide is responsible for the increased Ca2+ levels in the mitochondria and cytosol that precedes activation of the calpain-mediated apoptotic pathway. Additionally, we provide evidence that ceramide also activates the endolysosomal protease cathepsin D pathway. In summary, our findings show that ceramide controls the cell death decisions in photoreceptor cells and highlight the relevance of acid sphingomyelinase as a potential therapeutic target for the treatment of retinal pathologies.  相似文献   

16.
Loss of pericytes from the capillary wall is a hallmark of diabetic retinopathy, however, the pathogenic significance of this phenomenon is unclear. In previous mouse gene knockout models leading to pericyte deficiency, prenatal lethality has so far precluded analysis of postnatal consequences in the retina. We now report that endothelium-restricted ablation of platelet-derived growth factor-B generates viable mice with extensive inter- and intra-individual variation in the density of pericytes throughout the CNS. We found a strong inverse correlation between pericyte density and the formation of a range of retinal microvascular abnormalities strongly reminiscent of those seen in diabetic humans. Proliferative retinopathy invariably developed when pericyte density was <50% of normal. Our data suggest that a reduction of the pericyte density is sufficient to cause retinopathy in mice, implying that pericyte loss may also be a causal pathogenic event in human diabetic retinopathy.  相似文献   

17.
Methylglyoxal (MGO), a cytotoxic metabolite, is produced from glycolysis. Elevated levels of MGO are observed in a number of diabetic complications, including retinopathy, nephropathy and cardiomyopathy. Loss of retinal pericyte, a hallmark of early diabetic retinal changes, leads to the development of formation of microaneurysms, retinal hemorrhages and neovasculization. Herein, we evaluated the cytotoxic role of MGO in retinal pericytes and further investigated the signaling pathway leading to cell death. Rat primary retinal pericytes were exposed to 400 μM MGO for 6 h. Retinal vessels were prepared from intravitreally MGO-injected rat eyes. We demonstrated apoptosis, nuclear factor-kappaB (NF-κB) activation and inducible nitric oxide synthase (iNOS) induction in cultured pericytes treated with MGO and MGO-injected retinal vessels. In MGO-treated pericytes, TUNEL-positive nuclei were markedly increased, and NF-κB was translocalized into the nuclei of pericytes, which paralleled the expression of iNOS. The treatment of pyrrolidine dithiocarbamate (an NF-κB inhibitor) or l-N6-(1-iminoethyl)-lysine (an iNOS inhibitor) prevented apoptosis of MGO-treated pericytes. In addition, in intravitreally MGO-injected rat eyes, TUNEL and caspase-3-positive pericytes were significantly increased, and activated NF-κB and iNOS were highly expressed. These results suggest that the increased expression of NF-κB and iNOS caused by MGO is involved in rat retinal pericyte apoptosis.  相似文献   

18.
Apoptosis of retinal endothelial cells and pericytes is postulated to contribute to the development of retinopathy in diabetes. The goal of this study is to investigate diabetes-induced activation of retinal caspase-3, an apoptosis executer enzyme, in retina, and examine the effects of antioxidants on the activation. Caspase-3 activation was determined in the retina of alloxan diabetic rats (2-14 months duration) and in the isolated retinal capillary cells (endothelial cells and pericytes) by measuring cleavage of caspase-3 specific fluorescent substrate, and cleavage of caspase-3 holoenzyme and poly (ADP ribosyl) polymerase. Effect of antioxidants on the activation of caspase-3 was determined by feeding a group of diabetic rats diet supplemented with a comprehensive mixture of antioxidants, including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene and selenium for 2-14 months, and also under in vitro conditions by incubating isolated retinal capillary cells with antioxidants with wide range of actions. Caspase-3 was activated in the rat retina at 14 months of diabetes (P < 0.05 vs. normal), but not at 2 months of diabetes, and administration of antioxidants for the entire duration inhibited this activation. In the isolated retinal capillary cells incubated in 25 mM glucose medium, caspase-3 activity was increased by 50% compared to the cells incubated in 5 mM glucose (P < 0.02), and antioxidants or caspase-3 inhibitor inhibited this increase. Our results suggest that increased oxidative stress in diabetes is involved in the activation of retinal caspase-3 and apoptosis of endothelial cells and pericytes. Antioxidants might be inhibiting the development of diabetic retinopathy by inhibiting microvascular apoptosis.  相似文献   

19.
Ceramide increases steroid hormone production in MA-10 Leydig cells.   总被引:1,自引:0,他引:1  
Ceramide is known to have major roles in the control of cell proliferation, differentiation, and apoptosis. Recent studies also have shown that ceramide affects steroid production by JEG-3 choriocarcinoma cells, acutely dispersed rat Leydig cells, and ovarian granulosa cells, but the mechanism by which this occurs is unknown. Because ceramide induces apoptosis in many different cell types, we hypothesized that ceramide might affect steroidogenesis and/or induce apoptosis in MA-10 murine Leydig cells. To test this, MA-10 cells were incubated with either the water soluble C2-ceramide, (N-acetyl-sphingosine, 0.01-10 cm); bacterial sphingomyelinase (1-100 mU/ml); or C2-dihydroceramide (N-acetyl-sphinganine, 0.1-10 microM). The data show that N-acetyl-sphingosine significantly increased basal (0.87 +/- 0.2 vs. 0.42 +/- 0.09 ng/mg cell protein, P < 0.01) and human chorionic gonadotropin (hCG) stimulated progesterone (P) synthesis (204 +/- 12 vs. 120 +/- 5 ng/mg cell protein, P < 0.001); as did sphingomyelinase (basal P = 0.83 +/- 0.1 ng/mg cell protein, P < 0.01; hCG stimulated P = 173 +/- 7 ng/mg cell protein, P < 0.001). C2-dihydroceramide also increased basal P synthesis but was less effective than ceramide on a molar basis. Neither sphingomyelinase (100 mU/ml) nor ceramide (10 microM) had any effect on cAMP production or human chorionic gonadotropin binding; and neither induced any signs of apoptosis (FragEL DNA fragmentation assay and electron microscopy). Cells incubated with anti-Fas (300 ng/ml) demonstrated DNA fragmentation, nuclear condensation, and frequent apoptotic bodies, but had no change in P synthesis. These data show that ceramide significantly increases MA-10 Leydig cell P synthesis but does not induce apoptosis. The mechanism by which ceramide increases steroid hormone synthesis remains unknown but does not appear to be linked to the induction of apoptosis in MA-10 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号