首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways.  相似文献   

2.
3.
We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein.  相似文献   

4.
We have previously described a factor(s) produced by 8387 fibrosarcoma cells, which can affect plasminogen activator (PA) activity of cultured cells. Since then, transforming growth factor-beta (TGF beta) has been established as a major growth factor/growth inhibitor that regulates both the expression and activity of PAs and their endothelial-type inhibitor (PAI-1). The present study was undertaken to characterize the 8387 fibrosarcoma cell-derived factor(s) and to investigate its relationships to TGF beta by analysis of modulation of PA activity and cell growth. The fibrosarcoma cell-derived proteins were partially purified from serum-free conditioned culture medium using Bio-Gel P-10 chromatography. Two separate fractions with apparent molecular weights of 16,000 and 12,000 contained activities that both decreased the secretion of PA activity by human lung fibroblasts and inhibited the soft agar growth of A549 lung adenocarcinoma cells. Both factors affected similarly the production of urokinase-type PA and PAI-1 in various cell lines and enhanced anchorage-independent growth of murine AKR-2B fibroblasts. The effects of these factors thus resembled those of TGF beta. The immunological relationships between the Mr 16,000 and Mr 12,000 factors and TGF beta were therefore studied using neutralizing anti-TGF beta antibodies. The TGF beta antibodies efficiently inhibited the effects of the Mr 16,000 factor but not those of the Mr 12,000 factor in cell culture assays. The results suggest that 8387 fibrosarcoma cells produce two major growth inhibitors, one of which is closely related to TGF beta.  相似文献   

5.
Sangivamycin has shown a potent antiproliferative activity against a variety of human cancers. However, little is known about the mechanism of action underlying its antitumor activity. Here we demonstrate that sangivamycin has differential antitumor effects in drug-sensitive MCF7/wild type (WT) cells, causing growth arrest, and in multidrug-resistant MCF7/adriamycin-resistant (ADR) human breast carcinoma cells, causing massive apoptotic cell death. Comparisons between the effects of sangivamycin on these two cell lines allowed us to identify the mechanism underlying the apoptotic antitumor effect. Fluorescence-activated cell sorter analysis indicated that sangivamycin induced cell cycle arrest in the G(2)/M phase in MCF7/ADR cells. A marked induction of c-Jun expression as well as phosphorylation of c-Jun and JNK was observed after sangivamycin treatment of MCF7/ADR cells but not MCF7/WT cells. Sangivamycin also induced cleavage of lamin A and poly(ADP-ribose) polymerase (PARP) in MCF7/ADR cells, probably via activation of caspase-6, -7, and -9. Pretreatment with a caspase-9-specific inhibitor or pan-caspase inhibitor abolished sangivamycin-induced cleavage of lamin A and PARP but not sangivamycin induction of c-Jun expression and phosphorylation. Pretreatment of MCF7/ADR cells with SP600125, a specific inhibitor of JNK, or with rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta), significantly reduced the sangivamycin-induced apoptosis and almost completely abolished sangivamycin-induced phosphorylation of c-Jun and cleavage of lamin A and PARP. Transfection of MCF7/ADR cells with PKCdelta small interfering RNAs or PKCdelta antibody or rottlerin pretreatment significantly suppressed the phosphorylation of JNK. Taken together, our data suggest that sangivamycin induces mitochondria-mediated apoptotic cell death of MCF7/ADR cells via activation of JNK in a protein kinase Cdelta-dependent manner.  相似文献   

6.
Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.  相似文献   

7.
Suppression of human tumor cell resistance to TRAIL-induced apoptosis in confluent cultures, using molecular target drugs (sorafenib and SAHA) at non-toxic concentrations was studied. Sorafenib, a multikinase inhibitor, and SAHA, an inhibitor of histone deacetylase, effectively suppressed resistance of confluent human cells derived from the skin carcinoma (A431 cell line) and fibrosarcoma (HT-1080 cell line). The effectiveness of suppression of confluent resistance with these inhibitors for human carcinoma A431 cells was significantly higher than that for the human ovarian carcinoma OVCAR-3 cells. For all cell lines studied, suppression of confluent resistance with SAHA was more effective than when sorafenib was used. The possible reason for increasing tumor cell resistance in confluent cultures and the importance of this phenomenon for understanding drug resistance of cells in the tumor tissue are discussed.  相似文献   

8.
The role of protein kinase C (PKC) in the induction of nitric oxide synthesis by interferon-gamma (IFN-gamma) was investigated using two murine macrophage cell lines, J774 and RAW 264.7. Nitric oxide (NO) production was markedly reduced by a PKC inhibitor, Ro31-8220 in a dose-dependent manner. Incubation of cells with IFN-gamma resulted in translocation of PKC to the cell membrane. Prolonged incubation of cells with a high concentration of phorbol ester, which down-regulated PKC activity, also reduced nitric oxide production. These findings provide evidence that PKC is involved in the induction of nitric oxide synthesis by IFN-gamma.  相似文献   

9.
The protein kinase C (PKC) is a family of serine/threonine kinases that are key regulatory enzymes involved in growth, differentiation, cytoskeletal reorganization, tumor promotion, and migration. We investigated the functional involvement of PKC isotypes and of E-cadherin in the regulation of the locomotion of six human colon-adenocarcinoma cell lines. The different levels of the PKC alpha and the E-cadherin expression have predictable implications in the spontaneous locomotory activity. With the use of PKC alpha--specific inhibitors (safingol, Go6976) as well as the PKC delta--specific inhibitor rottlerin, we showed that only PKC alpha plays a major role in the regulation of tumor cell migration. The results were verified by knocking out the translation of PKC isozymes with the use of an antisense oligonucleotide strategy. After stimulation with phorbol ester we observed a translocation and a colocalization of the activated PKC alpha at the plasma membrane to the surrounding extracellular matrix. Furthermore, we investigated the functional involvement of E-cadherin in the locomotion with the use of a blocking antibody. A high level of PKC alpha expression together with a low E-cadherin expression was strongly related to a high migratory activity of the colon carcinoma cells. This correlation was independent of the differentiation grade of the tumor cell lines.  相似文献   

10.
11.
Transforming growth factor-beta 1 (TGF-beta 1) regulates the expression of the carcinoembryonic antigen (CEA) gene family in the human colon carcinoma cell line Moser. The mechanisms through which it acts, however, are unknown. In this communication, several lines of evidence are presented to show that the induction of CEA expression and secretion (collectively called CEA responses) by TGF-beta 1 is associated with protein kinase C (PKC) pathway of signal transduction. Treatment of intact cells with the PKC-specific inhibitor calphostin C down-modulated cellular PKC phosphotransferase activity and blocked the induction of the CEA responses by TGF-beta 1. Depletion of PKC by treatment of intact cells with phorbol ester also blocked the action of TGF-beta 1. The induction of the CEA responses by TGF-beta 1 was also blocked by the protein kinase inhibitor 1-(isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which also inhibited cellular PKC activity. However, TGF-beta 1 did induce the CEA responses in intact cells treated with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), the calmodulin-dependent phosphodiesterase inhibitor calmidazolium, the diacylglycerol kinase inhibitor R59 022, and the G-protein inhibitors cholera toxin and pertussis toxin. Treatment of intact cells with TGF-beta 1 induced a rapid and transient increase in PKC phosphotransferase activity. TGF-beta 1, however, was unable to induce PKC enzymatic activity in cells pretreated with calphostin C. Therefore, it is concluded that TGF-beta 1 regulates the CEA responses through a signal transducing pathway associated with PKC.  相似文献   

12.
Rat embryo fibroblasts and liver epithelial cell lines normally express two isoforms of protein kinase C (PKC), PKC alpha and PKC epsilon. Derivatives of these cells transformed by an activated human c-H-ras oncogene display a several-fold increase in expression of PKC alpha and a concomitant decrease in PKC epsilon, at both the protein and mRNA levels. Similar changes are seen when the transformed phenotype is induced by Zn2+ in cells carrying the activated ras oncogene under the control of a metallothionein promoter. Studies using cell lines that express very high levels of PKC beta 1, studies using a specific inhibitor of PKC (CGP 41251), and studies in which PKC activity is down-regulated by treatment with a phorbol ester tumor promoter provide evidence that the effects of the ras oncogene on the expression of PKC alpha and PKC epsilon are mediated mainly through a PKC-independent pathway. The present results provide the first evidence that transformation of cells by an oncogene can alter the relative expression of specific isoforms of PKC. It is possible that these changes contribute to the malignant phenotype of these cells.  相似文献   

13.
Protein kinase C (PKC) participates in a myriad of cellular processes. Protein kinase C isoforms play different roles based on their cellular expression balance and activation. The activity of classical PKC isoforms has been shown to be crucial for immune cell population homeostasis, playing a positive role in survival and proliferation. Protein kinase C inhibitors have been used for conditions where up-regulated PKC results in a pathological state. The most commonly investigated PKC inhibitors are highly effective in inhibiting PKC function but they are relatively unspecific, some of them even inhibiting other kinase families. Protein kinase C pseudosubstrates are auto-inhibitory domains which have been used to inhibit more specifically PKC in vitro but they do not freely penetrate cells. This could be resolved by using cell-permeable PKC pseudosubstrates which would more accurately modulate cellular PKC activity and PKC-related functions in intact cells. Here we show the development of a chimeric peptide inhibitor of classical PKC isoforms, consisting of a cell permeable sequence and a pseudosubstrate sequence which was able to translocate into cells, inhibiting PKC kinase activity and PKC T-cell-specific substrate phosphorylation. We also demonstrate a dramatic reduction in T-cell proliferation at high chimeric peptide concentration; this was attributed to apoptosis induction, as demonstrated by cell shrinking, phosphatidylserine exposure and DNA fragmentation. As expected, the control peptide (pseudosubstrate) did not penetrate cells, affect cell proliferation or survival. We also show that a neoplastic T-cell line which expresses higher levels of PKC is more resistant to chimeric peptide-mediated cell death than normal cells, corroborating a PKC role in apoptosis resistance. This chimeric peptide could be useful for the specific modulation of the PKC signalling pathway in pathological conditions.  相似文献   

14.
Adaptive response towards adriamycin in vitro: circumvention with verapamil   总被引:1,自引:0,他引:1  
In an attempt to identify mechanisms of adaptive response to adriamycin (ADR), we have earlier isolated ADR-resistant cell lines CHO/R and ME18/R by short-term pulse exposures of parent cell lines to this drug, followed by single-cell cloning. The results presented in this study have shown that the development of resistance to ADR was accompanied by cross-resistance to vinblastine and methotrexate. The resistance of tested cell lines towards ADR was substantially reversed by verapamil (VPL) at non-toxic concentrations. VPL abolished also the capability of these cell lines to express adaptive response after treatment of the cells with a conditioning dose of ADR. From the results of our study, we conclude that similar characteristics play a role in the mechanism of the phenomenon of adaptive response as in the mechanism of pleiotropic multidrug resistance.  相似文献   

15.
16.
Human T lymphocyte activation by tumor promoters: role of protein kinase C   总被引:6,自引:0,他引:6  
Protein kinase C (PKC) has a major role in a ligand-receptor-mediated signal transduction system in a variety of cell types including T lymphocytes. One of the early phenotypic changes associated with T cell activation is the expression of cell surface receptors for interleukin 2 (IL 2). To test the role of PKC in regulation of IL 2 receptor (IL 2-R) expression and T cell activation in general, we used tumor promoters (TP) as modulators of PKC and compared their effects on intact human T cells and on the enzymatic activity of T cell-derived PKC in a cellfree system. In T cells, the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced IL 2-R expression and proliferation associated with cytosol-to-membrane PKC translocation. A dose of TPA (1 to 4 ng/ml) that induced about 50% of the maximal activation of PKC in the enzymatic assay also induced half-maximal effects on cell proliferation, IL 2-R expression, and PKC redistribution in intact T cells. Structure-function studies with several phorbol ester analogs and non-phorbol ester TP directly correlated tumor promotion activity with the ability to activate PKC and induce IL 2-R. An inhibitor of PKC, chlorpromazine, was found to suppress TPA-mediated proliferation and IL 2-R expression, and inhibited T cell-derived PKC by competing with the phospholipid. Ca2+ ionophore, which synergizes with TPA in induction of T cell proliferation, facilitated the TPA-induced PKC translocation to the membrane. The results thus demonstrate a direct correlation between the effects of various chemicals on: subcellular redistribution of PKC in T cells; induction of T cell proliferation and IL 2-R expression; and activation of T cell-derived PKC in vitro. These data provide further support for the role of PKC in transduction of activation signals in T cells and in regulation of IL 2-R expression.  相似文献   

17.
18.
目的通过研究糖基因在髓性白血病中的差异表达,明确这些糖基因与白血病耐药的相关性,从而为预测和诊断髓性白血病耐药性,寻求逆转药物提供新策略和靶点。方法采用real-time PCR技术筛选髓性白血病细胞及其耐药细胞株中差异表达的糖基因,筛选出两组细胞差异表达3倍以上的糖基因,初步探索糖基因在髓性白血病耐药性中的特征性改变;采用流式细胞仪分析髓性白血病耐药细胞株与多种FITC标记植物凝集素的结合能力,表征比较细胞膜表面糖链的特征。结果 12个糖基因在NB4和NB4/ADR细胞株中表达具有显著的差异;高表达的糖基因与FITC标记植物凝集素的结合能力增强。结论髓性白血病细胞及其耐药细胞株中糖基因、细胞膜表面糖链特征均有显著差异,这些特征性改变与白血病多药耐药具有相关性。  相似文献   

19.
20.
Role of protein kinase C (PKC) in interleukin (IL) 2-induced proliferation was investigated by utilizing two murine IL 2-dependent cell lines, CT6 and CTLL-2 cell lines. CT6 cells showed a marked proliferative response to phorbol 12-myristate 13-acetate (PMA), while CTLL-2 did not. PMA induced PKC translocation from cytosol to membrane only in a PMA-responsive cell line. IL 2 failed to stimulate PKC translocation in both cell lines. H-7, a potent and specific PKC inhibitor, however, inhibited the proliferation of both cell lines induced by IL 2. Taken collectively, IL 2 may induce PKC activation without its translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号