首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Base sequence and helix structure variation in B and A DNA   总被引:22,自引:0,他引:22  
The observed propeller twist in base-pairs of crystalline double-helical DNA oligomers improves the stacking overlap along each individual helix strand. But, as proposed by Calladine, it also leads to clash or steric hindrance between purines at adjacent base-pairs on opposite strands of the helix. This clash can be relieved by: (1) decreasing the local helix twist angle between base-pairs; (2) opening up the roll angle between base-pairs on the side on which the clash occurs; (3) separating purines by sliding base-pairs along their long axes so that the purines are partially pulled out of the stack (leading to equal but opposite alterations in main-chain torsion angle delta at the two ends of the base-pair); and (4) flattening the propeller twist of the offending base-pairs. Simple sum functions, sigma 1 through sigma 4, are defined, by which the expected local variation in helix twist, base roll angle, torsion angle delta and propeller twist may be calculated from base sequence. All four functions are quite successful in predicting the behavior of B DNA. Only the helix twist and base roll functions are applicable to A DNA, and the helix twist function begins to fail for an A helical RNA/DNA hybrid. Within these limits, the sequence-derived sum functions match the observed helix parameter variation quite closely, with correlation coefficients greater than 0.900 in nearly all cases. Implications of this sequence-derived helix parameter variation for repressor-operator interactions are considered.  相似文献   

2.
Single crystal X-ray diffraction techniques have been used to determine the structure of the DNA octamer d(G-G-G-G-C-T-C-C) at a resolution of 2.25 A. The asymmetric unit consists of two strands coiled about each other to produce an A-type DNA helix. The double helix contains six G . C Watson-Crick base-pairs and two G . T mismatched base-pairs. The mismatches adopt a "wobble" type structure in which both bases retain their major tautomer forms. The double helix is able to accommodate this G . T pairing with little distortion of the overall helical conformation. Crystals of this octamer melt at a substantially lower temperature than do those of a related octamer also containing two G . T base-pairs. We attribute this destabilization to disruption of the hydration network around the mismatch site combined with changes in intermolecular packing. Full details are given of conformational parameters, base stacking, intermolecular contacts and hydration involving 52 solvent molecules.  相似文献   

3.
Crystallographic study of one turn of G/C-rich B-DNA   总被引:15,自引:0,他引:15  
The DNA decamer d(CCAGGCCTGG) has been studied by X-ray crystallography. At a nominal resolution of 1.6 A, the structure was refined to R = 16.9% using stereochemical restraints. The oligodeoxyribonucleotide forms a straight B-DNA double helix with crystallographic dyad symmetry and ten base-pairs per turn. In the crystal lattice, DNA fragments stack end-to-end along the c-axis to form continuous double helices. The overall helical structure and, notably, the groove dimensions of the decamer are more similar to standard, fiber diffraction-determined B-DNA than A-tract DNA. A unique stacking geometry is observed at the CA/TG base-pair step, where an increased rotation about the helix axis and a sliding motion of the base-pairs along their long axes leads to a superposition of the base rings with neighboring carbonyl and amino functions. Three-center (bifurcated) hydrogen bonds are possible at the CC/GG base-pair steps of the decamer. In their common sequence elements, d(CCAGGCCTGG) and the related G.A mismatch decamer d(CCAAGATTGG) show very similar three-dimensional structures, except that d(CCAGGCCTGG) appears to have a less regularly hydrated minor groove. The paucity of minor groove hydration in the center of the decamer may be a general feature of G/C-rich DNA and explain its relative instability in the B-form of DNA.  相似文献   

4.
Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G   总被引:27,自引:0,他引:27  
The antitumor antibiotic netropsin has been co-crystallized with a double-helical B-DNA dodecanucleotide of sequence: C-G-C-G-A-A-T-T-BrC-G-C-G, and the structure of the complex has been solved by X-ray diffraction at a resolution of 2.2 A. The structure has been refined independently by Jack-Levitt and Hendrickson-Konnert least-squares methods, leading to a final residual error of 0.257 by the Jack-Levitt approach (0.211 for two-sigma data) or 0.248 by the Hendrickson-Konnert approach, with no significant difference between refined structures. The netropsin molecule displaces the spine of hydration and fits snugly within the minor groove in the A-A-T-T center. It widens the groove slightly and bends the helix axis back by 8 degrees, but neither unwinds nor elongates the double helix. The drug molecule is held in place by amide NH hydrogen bonds that bridge adenine N-3 and thymine O-2 atoms, exactly as with the spine of hydration. The requirement of A X T base-pairs in the binding site arises because the N-2 amino group of guanine would demand impermissibly close contacts with netropsin. It is proposed that substitution of imidazole for pyrrole in netropsin should create a family of "lexitropsins" capable of reading G X C-containing base sequences.  相似文献   

5.
The crystal structure of the DNA decamer C-C-A-A-C-G-T-T-G-G has been solved to a resolution of 1.4 A, and is compared with the 1.3 A structure of C-C-A-A-G-A-T-T-G-G and the 1.6 A structure of C-C-A-G-G-C-C-T-G-G. All three decamers crystallize isomorphously in space group C2 with five base-pairs per asymmetric unit, and with decamer double helices stacked atop one another along the c axis in a manner that closely approximates a continuous B helix. This efficient stacking probably accounts for the high resolution of the crystal data. Comparison of the three decamers reveals the following. (1) Minor groove width is more variable than heretofore realized. Regions of A.T base-pairs tend to be narrower than average, although two successive A.T base-pairs alone may not be sufficient to produce narrowing. The minor groove is wider in regions where BII phosphate conformations are opposed diagonally across the groove. (2) Narrow regions of minor groove exhibit a zig-zag spine of hydration, as was first seen in C-G-C-G-A-A-T-T-C-G-C-G, whereas wide regions show two ribbons of water molecules down the walls, connecting base edge N or O with sugar O-4' atoms. Regions of intermediate groove width may accommodate neither pattern of hydration well, and may exhibit a less regular pattern of hydration. (3) Base-pair stacking is virtually identical at equivalent positions in the three decamers. The unconnected step from the top of one decamer helix to the bottom of the next helix is a normal helix step in all respects, except for the absence of connecting phosphate groups. (4) BII phosphate conformation require the unstacking of the two bases linked by the phosphate, but do not necessarily follow as an inevitable consequence of unstacking. They have an influence on minor groove width as noted in point (1) above. (5) Sugar ring pseudorotation P and main-chain torsion angle delta show an excellent correlation as given by the equation: delta = 40 degrees cos (P + 144 degrees) + 120 degrees. Although centered around C-2'-endo, the conformations in these B-DNA helices are distributed broadly from C-3'-exo to O-4'-endo, unlike the tighter clustering around C-3'-endo observed in A-DNA oligomer structures.  相似文献   

6.
A simple relation exists between the packing density in crystals of short A-DNA duplexes and their global double-helical structure. The volume per nucleotide pair shows a linear inverse correlation with the mean displacement of base pairs from the best straight helix axis. The mean displacement is a measure of major groove depth and varies between -3.3 A and -4.9 A in A-form oligonucleotides analysed in the crystalline state. Since the mean displacement of base pairs from the helix axis determines other helical parameters such as base-pair longitudinal slide, its correlation with crystal packing is of considerable interest. The displacement-packing correlation is very clear for octamer duplexes which crystallize in three different lattices. Longer A-helical fragments sometimes deviate from the rule. It may be speculated whether A-form duplexes not completing a full helical turn are especially prone to distortions due to packing in crystals or arising from intermolecular contacts in solution.  相似文献   

7.
S Jain  G Zon  M Sundaralingam 《Biochemistry》1991,30(14):3567-3576
The alternating DNA octamer d(GTGTACAC) has been grown in a novel hexagonal crystal form. The structure has been determined and refined to a 2-A resolution, with 51 water molecules. The A-DNA conformation is a variant of that observed for the tetragonal form of the same sequence (Jain et al., 1989) containing a bound spermine. The crystals belong to the space group P6(1)22, a = b = 32.40 A and c = 79.25 A, with one strand in the asymmetric unit. The new hexagonal structure was solved by rotation and translation searches in direct space and refined to a final R value of 12.7% by using 1561 unique reflections greater than 1.5 sigma (I). The electron density clearly shows that the penultimate A7 sugar had flipped into the alternative C2'-endo pucker. This dent in the molecule can be attributed to close intermolecular contacts. In contrast, in the tetragonal structure, the DNA is distorted in the central TA step, where the A5 backbone bonds C4'-C5' and O5'-P assume trans conformations. The hexagonal double helix more closely resembles the fiber diffraction A-DNA, compared to the tetragonal form. For instance, the tilt angle is higher (16 degrees vs 10 degrees), which is correlated with a larger displacement from the helix axis (3.5 vs 3.3), a lower rise per residue (2.9 vs 3.2), and a smaller major-groove width (6.1 vs 8.7), thus indicating that the variations in these global helical parameters are correlated. The propeller twist angles in both forms are higher for the G-C base pairs (15.3 degrees, 12.14 degrees) than for the A-T base pairs (10.8 degrees, 9.1 degrees), which is the reverse of the expected order. Unlike the tetragonal structure, the hexagonal crystal structure interestingly does not contain a bound spermine molecule. Our analysis reveals that the conformational differences between the tetragonal and hexagonal forms are not entirely due to the spermine binding, and crystal packing seems to play an important role.  相似文献   

8.
9.
Binding of Hoechst 33258 to the minor groove of B-DNA   总被引:28,自引:0,他引:28  
An X-ray crystallographic structure analysis has been carried out on the complex between the antibiotic and DNA fluorochrome Hoechst 33258 and a synthetic B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G. The drug molecule, which can be schematized as: phenol-benzimidazole-benzimidazole-piperazine, sits within the minor groove in the A-T-T-C region of the DNA double helix, displacing the spine of hydration that is found in drug-free DNA. The NH groups of the benzimidazoles make bridging three-center hydrogen bonds between adenine N-3 and thymine O-2 atoms on the edges of base-pairs, in a manner both mimicking the spine of hydration and calling to mind the binding of the auti-tumor drug netropsin. Two conformers of Hoechst are seen in roughly equal populations, related by 180 degrees rotation about the central benzimidazole-benzimidazole bond: one form in which the piperazine ring extends out from the surface of the double helix, and another in which it is buried deep within the minor groove. Steric clash between the drug and DNA dictates that the phenol-benzimidazole-benzimidazole portion of Hoechst 33258 binds only to A.T regions of DNA, whereas the piperazine ring demands the wider groove characteristic of G.C regions. Hence, the piperazine ring suggests a possible G.C-reading element for synthetic DNA sequence-reading drug analogs.  相似文献   

10.
The potentially Z-DNA-forming sequence d(GTGTACAC) crystallizes as A-DNA   总被引:6,自引:0,他引:6  
(GT)n/(CA)n sequences have stimulated much interest because of their frequent occurrence in eukaryotic DNA and their potential for forming the left-handed Z-DNA structure. We here report the X-ray crystal structure of a self-complementary octadeoxynucleotide, d(GTGTACAC), at 2.5 A resolution. The molecule adopts a right-handed double-helical conformation belonging to the A-DNA family. In this alternating purine-pyrimidine DNA minihelix the roll and twist angles show alternations qualitatively consistent with Calladine's rules. The average tilt angle of 9.3 degrees is between the values found in A-DNA (19 degrees) and B-DNA (-6 degrees) fibers. It is envisaged that such intermediate conformations may render diversity to genomic DNA. The base-pair tilt angles and the base-pair displacements from the helix axis are found to be correlated for the known A-DNA double-helical fragments.  相似文献   

11.
The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1.8 and 2.25 A, respectively. The molecules adopt and A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.  相似文献   

12.
Principles of sequence-dependent flexure of DNA   总被引:24,自引:0,他引:24  
The curvature of a bent rod may be defined in several different, but equivalent ways. The best way of describing the curvature of double-helical DNA is by an angle of turning per base step. Curvature comes mainly from the angle of roll between successive base-pairs, and this is defined as positive when the angle opens up on the minor groove side of the bases. DNA forms a plane curve if the roll angle values along the molecule alternate periodically between positive and negative, with a complete period equal to the helical repeat. It is known from studies of crystallized oligomers that the roll angles for particular dinucleotide steps have preferred values, or lie in preferred ranges of values. Therefore the formation of a plane curve will be easier with some base sequences of DNA than with others. We set up a computer algorithm for determining the ease with which DNA of given sequence will adopt a curved form. The algorithm has two different sets of constants: in model 1 the base step parameters come from an inspection of crystallized oligomers, and in model 2 data from a statistical survey of the incidence of dinucleotide steps in a large number of samples of chicken erythrocyte core DNA is incorporated. Both forms of the algorithm successfully locate the dyad of the nucleosome sequence (modulo 10) in a frog gene, and suggest strongly that sequence-dependent flexural properties of DNA play a part in the recognition of binding sites by nucleosome cores.  相似文献   

13.
The binding of echinomycin to deoxyribonucleic acid.   总被引:20,自引:4,他引:16       下载免费PDF全文
Echinomycin is a peptide antibiotic which binds strongly to double-helical DNA up to a limit of approximately one molecule per five base-pairs. There is no detectable interaction with rRNA and only extremely feeble non-specific interaction with poly(rA)-poly(rU). Heat denaturation of DNA greatly decreases the binding, and similarly limited interaction is observed with naturally occurring single-stranded DNA. Association constants for binding to nine double-helical DNA species from different sources are presented; they vary by a factor of approximately 10, but are not simply related to the gross base composition. The interaction with DNA is ionic-strength-dependent, the binding constant falling by a factor of 4 when the ionic strength is raised from 0.01 to 0.10mol/litre. From the effect of temperature on the association constant for calf thymus DNA, the enthalpy of interaction is calculated to be about -13kJ/mol (-3kcal/mol). Binding of echinomycin persists in CsCl gradients and the buoyant density of nicked bacteriophage PM2 DNA is decreased by 25 mg/ml. Echinomycin interacts strongly with certain synthetic poly-deoxynucleotides, the binding constant decreasing in the order poly(dG)-poly(dC) greater than poly(dG-dC) greater than poly(dA-dT). For the latter two polymers the number of base-pairs occluded per bound antibiotic molecule is calculated to be three, whereas for poly(dG)-poly(dC) it is estimated to be four to five. Poly(dA)-poly(dT) and poly(dI)-poly(dC) interact only very weakly with the antibiotic. Poly(dI-dC) interacts to a slightly greater extent, but the binding curve is quite unlike that seen with the three strongly binding synthetic polynucleotides. Echinomycin affects the supercoiling of closed circular duplex bacteriophage PM2 DNA in the characteristic fashion of intercalating drugs. At low ionic strength the unwinding angle is almost twice that of ethidium. Likewise the extension of the helix, determined from changes in the viscosity of rod-like sonicated DNA fragments, is nearly double that expected for a simple (monofunctional) intercalation process. On this basis the interaction process is characterized as bifunctional intercalation. At higher ionic strength the unwinding angle relative to that of ethidium and the helix extension per bound echinomycin molecule fall, indicating a smooth progression towards more nearly monofunctional intercalation. Two simpler compounds which act as analogues of the quinoxaline chromophores of echinomycin, quinoxaline-2-carboxamide and the trypanocidal drug Bayer 7602, interact with DNA very much more weakly than does echinomycin, showing that the peptide portion of the antibiotic plays an essential role in determining the strength and specificity of the interaction.  相似文献   

14.
15.
Previous experiments have shown that the locations of the histone octamer on DNA molecules of 140 to 240 base-pairs (bp) are influenced strongly by the nucleotide sequence. Here we have studied the locations of the histone octamer on a relatively long DNA molecule of 860 bp, using two different nucleases, micrococcal and DNAase I. Data were obtained from both the protein--DNA complexes and from the naked DNA at single-bond resolution, and then were analyzed by densitometry to yield plots of differential cleavage, which show clearly the changes in cutting due to the addition of protein. Our results show that the placement of core histones on the 860 bp molecule is definitely non-random. The digestion data provide evidence for five nucleosome cores, the centers of which lie in defined locations. In all but one of these protein--DNA complexes, the DNA adopts a unique, highly preferred rotational setting with respect to the protein surface. Another protein--DNA complex is unusual in that it protects 200 bp from digestion, yet is cut in its very center as if it were split into two parts. The apparent average twist of the DNA within all of these protein--DNA complexes is 10.2(+/- 0.1) bp, as measured by the periodicity of DNAase I digestion. This value is in excellent agreement with the twist of 10.21(+/- 0.05) bp deduced from the periodicity of sequence content in chicken nucleosome core DNA. In addition, we observe a discontinuity in the periodic cutting by DNAase I of about -1 to -3 bonds in going from any nucleosome core to the next. The most plausible interpretation of this discontinuity is that it reflects the angle by which adjacent protein--DNA complexes are aligned. Thus, any nucleosome may be related to its neighbor by a left-handed rotation in space of -1/10.2 to -3/10.2 helix turns, or -35 degrees to -105 degrees. Repeated many times, this operation would build a long, left-handed helix of nucleosomes similar to that described by many workers for the packing of nucleosomes in chromatin. In order to look for any long-range influences on the positioning of the histone octamer in the 860 bp molecule (as would be expected if the nucleosomes have to fit into some higher-order structure), we have examined the locations of the histone octamer on five different isolated short fragments of the 860-mer, all of nucleosomal length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called ‘601’ DNA.Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an ‘effective length’ of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.  相似文献   

17.
Single-crystal X-ray diffraction techniques have been used to characterize the structure of the self-complementary DNA oligomer d(CTCTAGAG). The structure was refined to an R factor of 14.7% using data to 2.15-A resolution. The tetragonal unit cell, space group P4(3)2(1)2, has dimensions a = 42.53 and c = 24.33 A. The asymmetric unit consists of a single strand or four base pairs. Two strands, related by a crystallographic dyad axis, coil about each other to form a right-handed duplex. This octamer duplex has a mean helix rotation of 32 degrees, 11.3 base pairs per turn, an average rise of 3.1 A, C3'-endo furanose conformations, a shallow minor groove, and a deep major groove. Such averaged parameters suggest classification of the octamer as a member of the A-DNA family. However, the global parameters tend to mask variations in conformational parameters observed at the level of the base pairs. In particular, the central TpA (= TpA) step displays extensive interstrand purine-purine overlap and an unusual sugar-phosphate backbone conformation. These structural features may be directly related to certain sequence-specific protein-DNA interactions involving nucleases and repressors.  相似文献   

18.
Solvent-accessible surfaces of nucleic acids   总被引:14,自引:0,他引:14  
Static solvent-accessible surface areas were calculated for DNA and RNA double helices of varied conformation, composition and sequence, for the single helix of poly(rC), and for a transfer RNA. The results show that for DNA and RNA double helices, two thirds of the water-accessible surface area become buried on double helix formation; phosphate oxygens retain near maximal exposure while the bases are 80% buried. Transfer RNA exposes slightly less surface per residue than does double-helical RNA, despite the presence of several additional “modified” groups, all of which are exposed significantly.When a probe corresponding to a single water molecule is used, both the total and atom type exposures are very similar for A-DNA and B-DNA, although marked differences appear in the major and minor groove exposures between the two conformations. For a given base-pair, the accessible surface area buried upon double-helical stacking is nearly constant (within 5%) for different sequences of neighboring base-pairs.For probes larger than single water molecules, there exist considerable differences in the total and atom type exposures of A-DNA and B-DNA. Conformational transitions between the A-DNA and B-DNA helical forms can thus be related to differences in the accessible areas for “structured” water, or a secondary hydration shell, rather than to interactions with individual water molecules of the primary hydration shell. The base-composition dependence of DNA helical conformation can be explained in terms of the opposing effects of thymine methyl groups of A · T base-pairs and the amino groups of G · C base-pairs upon the solvent within the grooves.The area calculations show that primarily the major groove of B-DNA and the minor groove of A-DNA have sufficient accessible surface area to be recognized by a probe size corresponding to the side-chains of amino acids.  相似文献   

19.
The structure of the self-complementary octamer d(GTACGTAC) has been analyzed by a single crystal X-ray diffraction method at 2.25 A resolution. The crystallographic R factor was 0.184 for all 1233 reflections at this resolution. In spite of the alternating purine-pyrimidine sequence, d(GTACGTAC) adopts the A-form conformation rather than the left-handed Z-form. The average helix twist and the mean rise per base pair are 32.1 degrees and 3.18 A, respectively. The d(GTACGTAC) helix is characterized by a wide open major groove and small base-pair tilt (9.7 degrees). The partial unwinding of the helix is observed only at the central pyrimidine-purine C-G step, but not at the other pyrimidine-purine T-A steps. Based on this study and six other X-ray studies, we propose a hypothesis that the A-DNA's are always unwound approximately 10 degrees at the C-G steps. Significant differences in base-pair stacking modes are seen between the purine-pyrimidine step and the pyrimidine-purine step. All deoxyribose rings adopt the C3'-endo conformation. All backbone torsion angles fall into the range expected for the A-DNA form, except for the nucleotide G5, whose alpha and gamma torsion angles adopt the trans, trans conformation instead of the common gauche-, gauche+ conformation.  相似文献   

20.
DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex.   总被引:10,自引:0,他引:10  
The structure of a complex between DNase I and d(GCGATCGC)2 has been solved by molecular replacement and refined to an R-factor of 0.174 for all data between 6 and 2 A resolution. The nicked octamer duplexes have lost a dinucleotide from the 3' ends of one strand and are hydrogen-bonded across a 2-fold axis to form a quasi-continuous double helix of 14 base-pairs. DNase I is bound in the minor groove of the B-type DNA duplex forming contacts in and along both sides of the minor groove extending over a total of six base-pairs. As a consequence of binding of DNase I to the DNA-substrate the minor groove opens by about 3 A and the duplex bends towards the major groove by about 20 degrees. Apart from these more global distortions the bound duplex also shows significant deviations in local geometry. A major cause for the observed perturbations in the DNA conformation seems to be the stacking type interaction of a tyrosine ring (Y76) with a deoxyribose. In contrast, the enzyme structure is nearly unchanged compared to free DNase I (0.49 A root-mean-square deviations for main-chain atoms) thus providing a rigid framework to which the DNA substrate has to adapt on binding. These results confirm the hypothesis that groove width and stiffness are major factors determining the global sequence dependence of the enzyme's cutting rates. The nicked octamer present in the crystals did not allow us to draw detailed conclusions about the catalytic mechanism but confirmed the location of the active site near H134 on top of the central beta-sheets. A second cut of the DNA induced by diffusion of Mn2+ into the crystals may suggest the presence of a secondary active site in DNase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号