首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hexagonal crystal structure of the A-DNA octamer d(GTGTACAC) and its comparison with the tetragonal structure: correlated variations in helical parameters
Authors:S Jain  G Zon  M Sundaralingam
Institution:Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706.
Abstract:The alternating DNA octamer d(GTGTACAC) has been grown in a novel hexagonal crystal form. The structure has been determined and refined to a 2-A resolution, with 51 water molecules. The A-DNA conformation is a variant of that observed for the tetragonal form of the same sequence (Jain et al., 1989) containing a bound spermine. The crystals belong to the space group P6(1)22, a = b = 32.40 A and c = 79.25 A, with one strand in the asymmetric unit. The new hexagonal structure was solved by rotation and translation searches in direct space and refined to a final R value of 12.7% by using 1561 unique reflections greater than 1.5 sigma (I). The electron density clearly shows that the penultimate A7 sugar had flipped into the alternative C2'-endo pucker. This dent in the molecule can be attributed to close intermolecular contacts. In contrast, in the tetragonal structure, the DNA is distorted in the central TA step, where the A5 backbone bonds C4'-C5' and O5'-P assume trans conformations. The hexagonal double helix more closely resembles the fiber diffraction A-DNA, compared to the tetragonal form. For instance, the tilt angle is higher (16 degrees vs 10 degrees), which is correlated with a larger displacement from the helix axis (3.5 vs 3.3), a lower rise per residue (2.9 vs 3.2), and a smaller major-groove width (6.1 vs 8.7), thus indicating that the variations in these global helical parameters are correlated. The propeller twist angles in both forms are higher for the G-C base pairs (15.3 degrees, 12.14 degrees) than for the A-T base pairs (10.8 degrees, 9.1 degrees), which is the reverse of the expected order. Unlike the tetragonal structure, the hexagonal crystal structure interestingly does not contain a bound spermine molecule. Our analysis reveals that the conformational differences between the tetragonal and hexagonal forms are not entirely due to the spermine binding, and crystal packing seems to play an important role.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号