首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Sulfhydryl blockers, such as N-ethylmaleimide, iodoacetate and heavy metals induce a transitory stimulation of O2 consumption and H2O2 production (oxidative burst) and a rapid release of electrolytes in leaves of various aquatic plants. The correlation between these two responses to N-ethylmaleimide or to Ag+ in separate organs and stages of leaf development was investigated inEgeria densa. Only adult leaves were able to respond to the sulfhydryl blockers with an oxidative burst, whereas this response was absent in immature growing leaves and in stem and root segments. In N-ethyl-maleimide- as well as in Ag+-treated adult leaves the oxidative burst was constantly associated with a relevant electrolyte leakage. These data are consistent with a model in which the SH reagent would first interact with a plasmalemma protein, leading to an increase in passive permeability to ions and to the activation of an oxidative enzyme of the type of the superoxide synthase described for granulocytes. In its turn, active-oxygen species produced by the activated oxidase might further damage the plasma membrane, increasing its passive permeability. Digitonin and nystatin, two reagents known to cause a permeabilization of lipid membranes, induced in adultE. densa leaves a transient increase in the rate of O2 consumption and H2O2 production and an electrolyte leakage very similar to those induced by sulfhydryl blockers. These effects, however, were not influenced by the flavin analogues diphenylene iodonium and quinacrine, and were partially inhibited by the presence of CN and salicylhydroxamic acid, thus suggesting the involvement of a different oxidase in the oxidative burst elicited by these reagents.Abbreviations BTP 1,3-bis-tris(hydroxymethyl)methylaminopropane - CCCP carbonylcyanide-chlorophenylhydrazone - DCMU 3-(3,4 dichloropheny 1)-1,1-dimethylurea - DPI diphenylene iodonium - NEM N-ethylmaleimide - QO2 O2 uptake  相似文献   

2.
In order to characterise the effect of ectomycorrhiza on Na+-responses of the salt-sensitive poplar hybrid Populus × canescens, growth and stress responses of Paxillus involutus (strain MAJ) were tested in liquid cultures in the presence of 20 to 500 mM NaCl, and the effects of mycorrhization on mineral nutrient accumulation and oxidative stress were characterised in mycorrhizal and non-mycorrhizal poplar seedlings exposed to 150 mM NaCl. Paxillus involutus was salt tolerant, showing biomass increases in media containing up to 500 mM NaCl after 4 weeks growth. Mycorrhizal mantle formation on poplar roots was not affected by 150 mM NaCl. Whole plant performance was positively affected by the fungus because total biomass was greater and leaves accumulated less Na+ than non-mycorrhizal plants. Energy dispersive X-ray microanalysis using transmission electron microscopy analysis of the influence of mycorrhization on the subcellular localisation of Na+ and Cl in roots showed that the hyphal mantle did not diminish salt accumulation in root cell walls, indicating that mycorrhization did not provide a physical barrier against excess salinity. In the absence of salt stress, mycorrhizal poplar roots contained higher Na+ and Cl concentrations than non-mycorrhizal poplar roots. Paxillus involutus hyphae produced H2O2 in the mantle but not in the Hartig net or in pure culture. Salt exposure resulted in H2O2 formation in cortical cells of both non-mycorrhizal and mycorrhizal poplar and stimulated peroxidase but not superoxide dismutase activities. This shows that mature ectomycorrhiza was unable to suppress salt-induced oxidative stress. Element analyses suggest that improved performance of mycorrhizal poplar under salt stress may result from diminished xylem loading of Na+ and increased supply with K+.  相似文献   

3.
Methyl-jasmonate (MeJA) has been proposed to be involved in the evocation of defense reactions, as the oxidative burst in plants, substituting the elicitors or enhancing their effect. 48 h dark- and sterilely cultured (axenic) aeroponic sunflower seedling roots excised and treated with different concentrations of MeJA showed a strong and quick depression of the H(+) efflux rate, 1.80 microM MeJA totally stopping it for approximately 90 min and then reinitiating it again at a lower rate than controls. These results were wholly similar to those obtained with nonsterilely cultured roots and have been interpreted as mainly based on H(+) consumption for O(2)(*-) dismutation to H(2)O(2). Also K(+) influx was strongly depressed by MeJA, even transitorily reverting to K(+) efflux. These results were consistent with those associated to the oxidative burst in plants. MeJA induced massive H(2)O(2) accumulation in the middle lamella and intercellular spaces of both the root cap cells and the inside tissues of the roots. The native acidic extracellular peroxidase activity of the intact (nonexcised) seedling roots showed a sudden enhancement (by about 52%) after 5 min of MeJA addition, maintained for approximately 15 min and then decaying again to control rates. O(2) uptake by roots gave similar results. These and other results for additions of H(2)O(2) or horseradish peroxidase, diphenylene iodonium, and sodium diethyldithiocarbamate trihydrate to the reaction mixture with roots were all consistent with the hypothesis that MeJA induced an oxidative burst, with the generation of H(2)O(2) being necessary for peroxidase activity. Results with peroxidase activity of the apoplastic fluid were in accordance with those of the whole root. Finally, MeJA enhanced NADH oxidation and inhibited hexacyanoferrate(III) reduction by axenic roots, and diphenylene iodonium cancelled out these effects. Redox activities by CN(-)- preincubated roots were also studied. All these results are consistent with the hypothesis that MeJA enhanced the NAD(P)H oxidase of a redox chain linked to the oxidative burst, so enhancing the generation of O(2)(*-) and H(2)O(2), O(2) uptake, and peroxidase activity by roots.  相似文献   

4.
Oliver Otte  Wolfgang Barz 《Planta》1996,200(2):238-246
Elicitation of cultured chickpea cells caused rapid insolubilization of two cell wall structural proteins, p190, a putative hydroxyproline-rich glycoprotein and p80, a putative proline-rich protein. This process appeared to result from an H2O2-mediated oxidative cross-linking mechanism and was initiated within 5 min and complete within 20 min. Further, elicitation of cells induced a rapid, transient generation of H2O2 (oxidative burst), with an onset after 5 min and a maximum H2O2-release after 20 min, as measured by a luminol-dependent chemiluminescence assay. Both chemiluminescence and protein insolubilization were suppressed by exogenous application of catalase or diphenylene iodonium, an inhibitor of plasma-membrane NADPH oxidase, respectively. In contrast, exogenous H2O2 mimicked the effect of the elicitor, suggesting that the putative oxidative crosslinking of the proteins depends directly on H2O2 from the oxidative burst. The peroxidase inhibitor salicylhydroxamic acid blocked both the elicitor- and the exogenous-H2O2-stimulated insolubilization, indicating that a peroxidase activity downstream of H2O2-supply is required. The protein kinase inhibitor staurosporine blocked the elicitation of the oxidative burst and protein insolubilization. In contrast, the protein phosphatase 2A inhibitor cantharidin accelerated, potentiated and extended the elicited oxidative burst. Cantharidin even stimulated the responses in the absence of the elicitor. The competitive effect of both inhibitors confirms that a coordinated activation of (i) protein kinase(s) and (ii) counteracting protein phosphates(s) is a poised signal transduction step for the induction of an NADPH-oxidase-dependent oxidative burst, which drives the putative peroxidase-catalyzed cross-linking of the cell wall proteins.Abbreviations DPI diphenylene iodonium - Ext-1 extensin-1 - gE1 anti-glycosylated extensin-1 antibodies - HRGP hydroxyp-roline-rich glycoprotein - LDC luminol-dependent chemiluminescence - POD peroxidase - PA polyacrylamide - PRP proline-rich proteins - SHAM salicylhydroxamic acid Financial support by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged. We thank Dr. C.J. Lamb (Salk Institute, La Jolla, Calif., USA) and Dr. L.A. Staehelin (University of Colorado, Boulder, Colo., USA) for their kind gifts of antibodies.  相似文献   

5.
Soybean (Glycine max L. Merr.) Cell-suspension cultures inoculated with avirulent Pseudomonas syringae pv. glycinea bacteria generated a sustained oxidative burst 3–6 h after the infection. The H2O2 production was not dependent on protein biosynthesis but, surprisingly, cycloheximide itself was a very strong inducer of the oxidative burst and of the alkalinization measured in the cell culture medium. Both responses were activated in a very similar manner by inhibitors of protein phosphatases, implicating a phosphorylation change evoked by cycloheximide as a trigger for the elicitation. The activation of the oxidative burst was totally blocked by the kinase inhibitor K252a. The alkalinization response preceded the oxidative burst. The generation of H2O2 depleted the medium of H+ but the expected alkalinization of about one pH-unit did not occur. The H2O2 production by the plasma membrane oxidase must therefore be charge-compensated, likely via H+-channel activity. Received: 4 October 1997 / Accepted: 12 May 1998  相似文献   

6.
Cadmium-induced initial changes in the production of reactive oxygen species (ROS) and antioxidant mechanism were investigated in soybean (Glycine max L. cv. Don Mario 4800 RR) leaves. Whole plants (WP) and plants without roots (PWR) were exposed to 0.0, 10.0 and 40.0 μM Cd for 0, 4, 6 and 24 h. Compared to PWR, a higher level of endogenous Cd in WP was associated with a lower oxidative stress measured in terms of lipid peroxidation. Furthermore, O2 •− content decreased in the leaves of Cd-treated WP, whereas it increased in those of Cd-treated PWR. Although O2 •− accumulation in PWR was associated with a decrease in superoxide dismutase (SOD) activity, O2 •− diminution in WP leaves was not related to any increase in SOD activity. H2O2 content increased in the leaves of both Cd-treated WP and PWR, and it was concomitant with a corresponding decline in catalase (CAT) and ascorbate peroxidase (APX) activities. When diphenyl iodonium (DPI), an inhibitor of NADPH oxidase, was added, H2O2 content remained unchanged in Cd-treated WP, suggesting that NADPH oxidase does not participate in the early hours of Cd toxicity. Taken together, our results showed that early ROS evolution and oxidative damage were different in WP and PWR. This suggests that the response in soybean leaves during the early hours of Cd toxicity is probably modulated by the root.  相似文献   

7.
The ability to measure directly individual protoplast ion fluxes is a valuable addition to patch clamp and other techniques when using protoplasts to study membrane transporters. Before interpreting observations on protoplasts in terms of behaviour of intact cells and tissues, some methodological questions should be addressed. These include effects of space and time variations of transporter activities over the membrane, the osmotic dependence of specific ion transporters and the effect of the regenerating cell wall. In this study net H+ and Ca2+ fluxes were measured from individual corn (Zea mays L.) coleoptile protoplasts using a non-invasive microelectrode technique for ion flux measurements. For Ca2+, the flux distribution was almost symmetrical, ranging ±30 nmol · m−2 · s−1 around zero. For H+ it was skewed towards efflux ranging from −100 to +10 nmol · m−2 · s−1. The distribution of H+ fluxes through the protoplast surface was a complex mosaic which changed with time, sometimes showing oscillations. These flux variations with time and position around the surface, apparently driven by endogenous mechanisms, may be relevant to protoplast pH homeostasis. When the new cell wall was partially regenerated on the next day, the correlation between H+ and Ca2+ fluxes increased, which is consistent with the weak-acid Donnan-Manning model of cell wall ion exchange. Received: 11 June 1997 / Accepted: 10 July 1997  相似文献   

8.
9.
Mancuso S  Papeschi G  Marras AM 《Planta》2000,211(3):384-389
 A simple procedure is described for the fabrication of micrometer to nanometer-scale platinum electrodes to be used in a vibrating oxygen-selective system. The electrode was prepared by etching a fine platinum wire and insulating it with an electrophoretic paint. The dimensions allowed this electrode to be used with the “vibrating probe technique” in exploratory studies aimed at mapping and measuring the patterns of net influxes as well as effluxes of oxygen in Olea europaea L. leaves and roots with spatial and temporal resolutions of a few microns and a few seconds, respectively. The magnitude and spatial localisation of O2 influxes in roots was characterised by two distinct peaks. The first, in the division zone, averaged 38 ± 5 nmol m−2 s−1; the second, in the elongation region, averaged 68 ± 6 nmol m−2 s−1. Long-term records of oxygen influx in the elongation region of the root showed an oscillatory regime characterised by a fast oscillation with periods of about 8–9 min. In leaves, the system allowed the measurement of real-time changes in O2 evolution following changes in light. Furthermore, it was possible to obtain “topographical” images of the photosynthetically generated oxygen diffusing through different stomata from a region of the leaf of 120 μm × 120 μm. The combination of topographic and electrochemical information at the micrometer scale makes the system an efficient tool for studying biological phenomena involving oxygen diffusion. Received: 12 November 1999 / Accepted: 1 February 2000  相似文献   

10.
Upon mitogen sensitization, lymphocytes undergo proliferation by oxyradical-based mechanisms. Through continuous resting–restimulation cycles, lymphocytes accumulate auto-induced oxidative lesions which lead to cell dysfunction and limit their viability. Astaxanthin (ASTA) is a nutritional carotenoid that shows notable antioxidant properties. This study aims to evaluate whether the in vitro ASTA treatment can limit oxyradical production and auto-oxidative injury in human lymphocytes. Activated lymphocytes treated with 5 μM ASTA showed immediate lower rates of O2•−/H2O2 production whilst NO and intracellular Ca2+ levels were concomitantly enhanced (≤4 h). In long-term treatments (>24 h), the cytotoxicity test for ASTA showed a sigmoidal dose–response curve (LC50 = 11.67 ± 0.42 μM), whereas higher activities of superoxide dismutase and catalase in 5 μM ASTA-treated lymphocytes were associated to significant lower indexes of oxidative injury. On the other hand, lower proliferative scores of ASTA lymphocytes might be a result of diminished intracellular levels of pivotal redox signaling molecules, such as H2O2. Further studies are necessary to establish the ASTA-dose compensation point between minimizing oxidative damages and allowing efficient redox-mediated immune functions, such as proliferation, adhesion, and oxidative burst.  相似文献   

11.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

12.
The production of reactive oxygen species (ROS) plays important roles in the life cycle and in the stress response and defence mechanisms of plants. Various enzyme systems are involved in the formation of ROS in the apoplast, including plasmalemma NADPH oxidase and apoplastic peroxidases. The production of O 2 ·? and apoplastic peroxidase and exogenous NADH oxidation activities are all strongly dependent on the age of roots??the younger the root, the greater the activity. Apoplastic production of ROS is shown in the root by using specific histochemical probes, this ROS production is growing zone dependent. In the present study, using olive seedlings, differences were also observed between cultivars, especially in O 2 ·? production by the Verdial cultivar which was well above that of other cultivars studied. In all the cultivars, treatment of roots with methyl jasmonate (MeJA) or methyl salicylate (MeSA) increased O 2 ·? production. Similar results were observed for peroxidase activity, but not for the oxidation of exogenous NADH which was either unaffected (MeJA) or even partially inhibited (MeSA). A conclusion was that MeJA or MeSA induced apoplastic production of ROS does not use exogenous NADH. Treatment with diphenylene iodonium (DPI) reduced the formation of O 2 ·? , but affected neither peroxidase nor NADH oxidation activities. Cyanide inhibited O 2 ·? production and peroxidase and NADH oxidation activities. Treatment with MnCl2 had a strong stimulatory effect on peroxidase and NADH oxidation activities, but much less on O 2 ·? production. Finally, azide greatly reduced all activities, but especially O 2 ·? production. Together, these results indicate a relationship between oxidative activities and the processes of root growth, and that those activities are also dependent on the cultivar, as well as an involvement of peroxidases and plasmalemma NADPH oxidase in apoplast ROS production which is sensitive to DPI, azide, and cyanide but relatively insensitive to MnCl2, while exogenous NADH oxidation is linked to peroxidase activity.  相似文献   

13.
Summary Extracellular peroxidase has been shown to contribute to superoxide production in wounded wheat (Triticum aestivum L. cv. Ljuba) root cells. The superoxide-synthesizing system of root cells was considerably inhibited by KCN and NaN3 and activated by MnCl2 and H2O2. Treatment of roots with salicylic acid and a range of di- and tri-carbonic acids (malic, citric, malonic, fumaric, and succinic acids) stimulated superoxide production in both root cells and extracellular solution. The H2O2-stimulated superoxide production in the extracellular solution was much higher when roots were preincubated with salicylic or succinic acid. Exogenous acids enhanced peroxidase activity in the extracellular solution. Pretreatment of root cells with the detergents trypsin and sodium dodecyl sulfate had similar effects on the peroxidase activity. Significant inhibition of both superoxide production and peroxidase activity by diphenylene iodonium suggests that the specificity of the latter as an inhibitor of NADPH oxidase is doubtful. Results obtained indicate that extracellular peroxidase is involved in the superoxide production in wheat root cells. The mobile form of peroxidase can be readily secreted to the apoplastic solution and serve as an emergency enzyme involved in plant wound response.Abbreviations DPI diphenylene iodonium - ECS extracellular solution - ROS reactive oxygen species - SA salicylic acid  相似文献   

14.
Summary.  In cell suspension cultures of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) a rapid and concentration-dependent accumulation of H2O2 is induced by excess concentrations of copper (up to 100 μM). This specific and early response towards copper stress was shown to be extracellular. Addition of 300 U of catalase per ml decreased the level of H2O2. Superoxide dismutase (5 U/ml) induced an increase in H2O2 production by 22.2%. This indicates that at least part of the H2O2 is produced by dismutation of superoxide. Pretreatment of the cell cultures with the NAD(P)H oxidase inhibitors diphenylene iodonium (2 and 10 μM) and quinacrine (1 and 5 mM) prevented the generation of H2O2 under copper stress for 90%. The influence of the pH on the H2O2 production revealed the possible involvement of cell-wall-dependent peroxidases in the generation of reactive oxygen species after copper stress. Received May 20, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Plant Physiology, Department of Biology, University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerp, Belgium.  相似文献   

15.
Senescence is a developmentally regulated and highly ordered sequence of events. Senescence leads to abscission of plant organs and eventually leads to death of a plant or part of it. Present study revealed that Phalaenopsis flower undergo senescence due to over activation of O2 ·−generating xanthine oxidase (XO), which consequently increases the concentrations of O2 ·− leading to enhanced oxidative damage and disturbed cellular redox environment as indicated by increased lipid peroxidation and DHA/AsA + DHA ratio, respectively. While activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and non-specific peroxidase (POD) were enhanced in sepals and petals of old flower, activities of catalase (CAT) and glutathione reductase (GR) were decreased. Exogenous application of nitric oxide (NO) retarded H2O2-induced senescence of Phalaenopsis flower by downregulating activity of XO and concentrations of O2 ·−, H2O2 and malondialdehyde (MDA, an index of lipid peroxidation). Exogenous application of NO also downregulated SOD activity and upregulated antioxidant enzymes involved in the detoxification of H2O2 (CAT and APX), and in the regulation of redox couples viz, monodehydroascorbate reductase (MDHAR) and GR, together with the modulation in non-protein thiol status and DHA/AsA + DHA ratio.  相似文献   

16.
A group of 12 healthy non-smoking men [mean age 22.3 (SD 1.1) years], performed an incremental exercise test. The test started at 30 W, followed by increases in power output (P) of 30 W every 3 min, until exhaustion. Blood samples were taken from an antecubital vein for determination of plasma concentration lactate [La]pl and acid-base balance variables. Below the lactate threshold (LT) defined in this study as the highest P above which a sustained increase in [La]pl was observed (at least 0.5 mmol · l−1 within 3 min), the pulmonary oxygen uptake (O2) measured breath-by-breath, showed a linear relationship with P. However, at P above LT [in this study 135 (SD 30) W] there was an additional accumulating increase in O2 above that expected from the increase in P alone. The magnitude of this effect was illustrated by the difference in the final P observed at maximal oxygen uptake (O2max) during the incremental exercise test (P max,obs at O2max) and the expected power output at O2max(P max,exp at O2max) predicted from the linear O2-P relationship derived from the data collected below LT. The P max,obs at O2max amounting to 270 (SD 19) W was 65.1 (SD 35) W (19%) lower (P<0.01) than the P max,exp at O2max . The mean value of O2max reached at P max,obs amounted to 3555 (SD 226) ml · min−1 which was 572 (SD 269) ml · min−1 higher (P<0.01) than the O2 expected at this P, calculated from the linear relationship between O2 and P derived from the data collected below LT. This fall in locomotory efficiency expressed by the additional increase in O2, amounting to 572 (SD 269) ml O2 · min−1, was accompanied by a significant increase in [La]pl amounting to 7.04 (SD 2.2) mmol · l−1, a significant increase in blood hydrogen ion concentration ([H+]b) to 7.4 (SD 3) nmol · l−1 and a significant fall in blood bicarbonate concentration to 5.78 (SD 1.7) mmol · l−1, in relation to the values measured at the P of the LT. We also correlated the individual values of the additional O2 with the increases (Δ) in variables [La]pl and Δ[H+]b. The Δ values for [La]pl and Δ[H+]b were expressed as the differences between values reached at the P max,obs at O2max and the values at LT. No significant correlations between the additional O2 and Δ[La]pl on [H+]b were found. In conclusion, when performing an incremental exercise test, exceeding P corresponding to LT was accompanied by a significant additional increase in O2 above that expected from the linear relationship between O2 and P occurring at lower P. However, the magnitude of the additional increase in O2 did not correlate with the magnitude of the increases in [La]pl and [H+]b reached in the final stages of the incremental test. Accepted: 30 October 1997  相似文献   

17.
The purpose of this study was to develop a method to determine the power output at which oxygen uptake (O2) during an incremental exercise test begins to rise non-linearly. A group of 26 healthy non-smoking men [mean age 22.1 (SD 1.4) years, body mass 73.6 (SD 7.4) kg, height 179.4 (SD 7.5) cm, maximal oxygen uptake (O2max) 3.726 (SD 0.363) l · min−1], experienced in laboratory tests, were the subjects in this study. They performed an incremental exercise test on a cycle ergometer at a pedalling rate of 70 rev · min−1. The test started at a power output of 30 W, followed by increases amounting to 30 W every 3 min. At 5 min prior to the first exercise intensity, at the end of each stage of exercise protocol, blood samples (1 ml each) were taken from an antecubital vein. The samples were analysed for plasma lactate concentration [La]pl, partial pressure of O2 and CO2 and hydrogen ion concentration [H+]b. The lactate threshold (LT) in this study was defined as the highest power output above which [La]pl showed a sustained increase of more than 0.5 mmol · l−1 · step−1. The O2 was measured breath-by-breath. In the analysis of the change point (CP) of O2 during the incremental exercise test, a two-phase model was assumed for the 3rd-min-data of each step of the test: X i =at i +b i for i=1,2,…,T, and E(X i )>at i +b for i =T+1,…,n, where X 1, … , X n are independent and ɛ i ∼N(0,σ2). In the first phase, a linear relationship between O2 and power output was assumed, whereas in the second phase an additional increase in O2 above the values expected from the linear model was allowed. The power output at which the first phase ended was called the change point in oxygen uptake (CP-O2). The identification of the model consisted of two steps: testing for the existence of CP and estimating its location. Both procedures were based on suitably normalised recursive residuals. We showed that in 25 out of 26 subjects it was possible to determine the CP-O2 as described in our model. The power output at CP-O2 amounted to 136.8 (SD 31.3) W. It was only 11 W – non significantly – higher than the power output corresponding to LT. The O2 at CP-O2 amounted to 1.828 (SD 0.356) l · min−1 was [48.9 (SD 7.9)% O2 max ]. The [La]pl at CP-O2, amounting to 2.57 (SD 0.69) mmol · l−1 was significantly elevated (P<0.01) above the resting level [1.85 (SD 0.46) mmol · l−1], however the [H+]b at CP-O2 amounting to 45.1 (SD 3.0) nmol · l−1, was not significantly different from the values at rest which amounted to 44.14 (SD 2.79) nmol · l−1. An increase of power output of 30 W above CP-O2 was accompanied by a significant increase in [H+]b above the resting level (P=0.03). Accepted: 25 March 1998  相似文献   

18.
Arteries stimulated by angiotensin II (AII) to contract do not display the expected augmentation of O2 consumption seen with other cardiovascular contractile agonists. We tested the hypothesis that superoxide (O2) or other reactive oxidant species generated by AII played a role in the paradoxical O2 consumption response in porcine carotid artery, with or without an intact endothelium. Endothelium-denuded arteries were incubated with either 1 μM diphenylene iodonium (DPI), an inhibitor of NAD(P)H oxidase, 300 u/ml superoxide dismutase (SOD), a scavenger of O2, or 20 U/ml catalase, an enzyme which promotes conversion of O2 (scavenged in the form of H2O2) to O2. DPI treatment resulted in the expected increase in O2 consumption upon contractile activation with AII challenge (1.05± 0.23 μmol/g/min; n = 6, p < .01), as did treatment with SOD (0.67± 0.20 μmol/g/min; n = 4, p < .05). Catalase incubation resulted in a burst of O2 generation upon AII challenge (1.30 ± 0.21 μmol/g/min; n = 10, p < .001). In endothelium-intact arteries, O2 consumption was again not augmented with AII challenge; instead, a burst of O2 production was observed (0.66 ± 0.22 μmol/g/min; n = 9, p < .05), which was not affected further by addition of catalase. Thus, the absence of apparent augmentation of O2 consumption during contractile activation of endothelium-denuded arteries was attributed to simultaneous NAD(P)H oxidase-dependent production of O2, and attendant H2O2 and O2 generation which either and masked the detection of O2 consumed or suppressed mitochondrial uptake of O2, or both. An intact endothelium was required to manifest the burst of O2 generation with AII stimulation under normal conditions. (Mol Cell Biochem xxx: 235–239, 2005)  相似文献   

19.
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate, with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase mitochondrial ROS production. Cyanide (CN) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2 production.  相似文献   

20.
Chitosan, CN, or H2O2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H2O2, or chitosan + H2O2 on EC. H2O2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN and the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H2O2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H2O2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号