首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

2.
Previous studies have shown that ischemic preconditioning protects several organs, including the pancreas, from ischemia/reperfusion-induced injury. The aim of the investigation was to determine whether ischemic preconditioning affects the course edematous pancreatitis. METHODS: In rats, ischemic preconditioning was performed by short-term clamping the celiac artery. Acute pancreatitis was induced by caerulein. The severity of acute pancreatitis was evaluated between the first and tenth day of inflammation. RESULTS: Ischemic preconditioning applied alone caused a mild pancreatic damage. Combination of ischemic preconditioning with caerulein attenuated the severity of pancreatitis in histological examination and reduced the pancreatitis-evoked increase in plasma lipase and pro-inflammatory interleukin-1beta. This effect was associated with an increase in plasma level of anti-inflammatory interleukin-10 and partial reversion of the pancreatitis-evoked drop in pancreatic DNA synthesis and pancreatic blood flow. In secretory studies, ischemic preconditioning in combination with induction of acute pancreatitis attenuated the pancreatitis-evoked decrease in secretory reactivity of isolated pancreatic acini to stimulation by caerulein. In the initial period of acute pancreatitis, ischemic preconditioning alone and in combination with caerulein-induced acute pancreatitis prolonged the activated partial thromboplastin time (APTT), increased plasma level of D-dimer and shortened the euglobulin clot lysis time. The protective effect of ischemic preconditioning was observed during entire time of experiment and led to acceleration of pancreatic regeneration. CONCLUSIONS: Ischemic preconditioning reduces the severity of caerulein-induced pancreatitis and accelerates pancreatic repair; and this effect is related to the activation of fibrinolysis and reduction of inflammatory process.  相似文献   

3.
Endotoxemia in newborn rats attenuates acute pancreatitis at adult age.   总被引:2,自引:0,他引:2  
Bacterial endotoxin (lipopolysaccharide, LPS), at high concentration is responsible for sepsis, and neonatal mortality, however low concentration of LPS protected the pancreas against acute damage. The aim of this study was to investigate the effect of exposition of suckling rats to LPS on the course of acute pancreatitis at adult age. Suckling rat (30-40g) received intraperitoneal (i.p.) injection of saline (control) or LPS from Escherichia coli or Salmonella typhi (5, 10 or 15 mg/kg-day) during 5 consecutive days. Two months later these rats have been subjected to i.p. cearulein infusion (25 microg/kg) to produce caerulein-induced pancreatitis (CIP). The following parameters were tested: pancreatic weight and morphology, plasma amylase and lipase activities, interleukin 1beta (IL-1 beta), interleukin 6 (IL-6), and interleukin 10 (IL-10) plasma concentrations. Pancreatic concentration of superoxide dismutase (SOD) and lipid peroxidation products; malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) have been also measured. Caerulein infusion produced CIP in all animals tested, that was confirmed by histological examination. In the rats, which have been subjected in the neonatal period of life to LPS at doses 10 or 15 mg/kg-day x 5 days, all manifestations of CIP have been reduced. In these animals acute inflammatory infiltration of pancreatic tissue and pancreatic cell vacuolization have been significantly diminished. Also pancreatic weight, plasma lipase and alpha-amylase activities, as well as plasma concentrations of IL-1beta and IL-6 have been markedly decreased, whereas plasma anti-inflammatory IL-10 concentration was significantly increased in these animals as compared to the control rats, subjected in the infancy to saline injection instead of LPS. Caerulein-induced fall in pancreatic SOD concentration was reversed and accompanied by significant reduction of MDA + 4 HNE in the pancreatic tissue. The effects of LPS derived from E. coli or S. typhi were similar. Pretreatment of suckling rats with LPS at dose of 10 mg/kg-day x 5 days resulted in the most prominent attenuation of acute pancreatitis at adult age, whereas LPS at dose of 5 mg/kg-day x 5 days given to the neonatal rats failed to affect significantly acute pancreatitis induced in these animals 2 months later. We conclude that: 1/ Prolonged exposition of suckling rats to bacterial endotoxin attenuated acute pancreatitis induced in these animals at adult age. 2/ This effect could be related to the increased concentration of antioxidative enzyme SO in the pancreatic tissue and to the modulation of cytokines production in these animals.  相似文献   

4.
Hydrogen sulphide (H(2)S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-gamma-lyase (CSE) is a major H(2)S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H(2)S and SP in pulmonary inflammation as well as a pro-inflammatory role of H(2)S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H(2)S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H(2)S levels and pancreatic H(2)S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H(2)S may be mediated by SP-NK-1R pathway in acute pancreatitis.  相似文献   

5.
We have recently shown that treatment with calcitonin gene-related peptide (CGRP) before and during induction of acute pancreatitis exhibits a protective effect against pancreatic damage evoked by overdose of caerulein. Studies in the stomach have shown that administration of CGRP exhibits dual action on gastric mucosa, CGRP administration before induction of gastric lesions, protects gastric mucosa against damage, whereas treatment with this peptide after development of gastric ulcer exacerbates mucosal injury. These observations prompt us to determine the influence of CGRP administrated before and after induction of pancreatitis on development and evolution of pancreatic tissue damage. METHODS: Acute pancreatitis was induced by s.c. infusion of caerulein (10 microg/kg/h) for 5 h. CGRP was administrated (10 microg/kg s.c. per dose) 30 min prior to caerulein infusion and 3 h later during caerulein infusion or at the time 1 h, 4 h and 7 h after the end of caerulein infusion. Rats were sacrificed at the time 0 h, 3 h or 9 h after cessation of caerulein administration. The pancreatic blood flow (PBF), plasma activity of amylase, plasma interleukin-1beta concentration, cell proliferation, biochemical and morphological signs of pancreatitis were examined. RESULTS: Caerulein-induced pancreatitis (CIP) led to 42% decrease in DNA synthesis, 30% inhibition of PBF, as well as, a significant increase in pancreatic weight, plasma amylase activity, plasma interleukin-1beta concentration, and development of the histological signs of pancreatic damage (edema, leukocyte infiltration and vacuolization). Treatment with CGRP prior and during induction of CIP attenuated the pancreatic damage what was manifested by partial reversion of the drop in DNA synthesis (40.9+1.7 v. 34.2+2.0 dpm/microg DNA) and PBF (83+3% v. 70+3%). Increases in pancreatic weight and plasma interleukin-1beta were reduced. Morphology showed improvement of pancreatic integrity. Administration of CGRP after induction of CIP aggravated pancreatic damage what was manifested by additional decrease in PBF and DNA synthesis. Also pancreatic weight as well as histological signs of pancreatic damage were increased. CONCLUSIONS: (1) Administration of CGRP before and during induction of pancreatitis protects pancreas against pancreatic damage. (2) Treatment with CGRP after development of CIP aggravates pancreatic damage.  相似文献   

6.
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.  相似文献   

7.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 microg/kg caerulein, L-arginine used for NO induction and N(omega)-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

8.
Activation of nuclear factor kappaB (NF-kappaB) and caspases may greatly amplify inflammation and cell damage in addition to that directly exerted by free radicals. Since reactive oxygen species (ROS) are involved in acute pancreatitis, we studied whether the administration of chondroitin-4-sulphate (C4S), in addition to its antioxidant activity, was able to modulate NF-kappaB and caspase activation in an experimental model of caerulein-induced acute pancreatitis in mice. Hyperstimulating doses of caerulein (50 microg/ kg), five injections per mouse given at hourly intervals produced the following: high serum lipase and amylase activity; lipid peroxidation, evaluated by 8-isoprostane concentrations; loss of antioxidant defenses such as glutathione reductase (GR) activity; NF-kappaB activation and loss of cytoplasmic IkappaBalpha protein; increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), caspase-3, and caspase-7 gene expression and their related protein; accumulation and activation of neutrophils in the damaged tissue, evaluated by elastase (ELA) determination; and pancreatic injury, evaluated by histologic analysis. Pretreatment of mice with different doses of C4S, given 1 hr before caerulein injections and 1 and 2 hrs after the last caerulein injection, reduced lipid peroxidation, inhibited NF-kappaB translocation and cytoplasmic IkappaBalpha protein loss, decreased TNF-alpha, IL-6, and caspase gene expression and their related protein levels, limited endogenous antioxidant depletion, and reduced tissue neutrophils accumulation and tissue damage. Since molecules with antioxidant activity can block NF-kappaB and apoptosis activation, we suggest that C4S administration is able to block NF-kappaB and caspase activation by reducing the oxidative burst.  相似文献   

9.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 µg/kg caerulein, L-arginine used for NO induction and Nω-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

10.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   

11.
Little is known about the changes in pancreatic enzyme storage in acute pancreatitis. We have performed flow cytometric studies of zymogen granules from rats with acute pancreatitis induced by hyperstimulation with caerulein. A comparison was made with rats treated with hydrocortisone (10 mg/kg/day) over 7 days before inducing pancreatitis in order to find out whether the amount of enzymes stored in the pancreas plays a key role in the development of pancreatitis. The potentially therapeutic effect of L-364,718 (0.1 mg/kg/day, for 7 days), a CCK receptor antagonist, was assayed in the rats with caerulein-induced pancreatitis which had previously received the hydrocortisone treatment. A significant increase in the intragranular enzyme content was observed 5 h after hyperstimulation with caerulein. The highest values were reached in the rats previously treated with hydrocortisone. The greatest pancreatic enzyme load was parallel to the highest values in plasma amylase, edema and haematocrit observed. Acute pancreatitis was reversed seven days later. At this stage smaller granules appeared in the pancreas whose enzyme content was similar to that of controls when no treatment was applied after pancreatitis. In contrast, L-364,718 administration prevented the favourable evolution of pancreatitis since the antagonism exerted on CCK receptors induced a blockade of secretion of the large amounts of enzymes stored in the pancreas. Moreover, the enzyme content in zymogen granules was below normal values since the stimulatory CCK action on enzyme synthesis can be inhibited by L-364,718. Our results suggest that the efficiency of CCK antagonists, as potential therapy, would also depend on the load of enzymes in the pancreas when acute pancreatitis is produced.  相似文献   

12.
Acute pancreatitis is accompanied by the enhanced expression of EGF in the pancreas and the administration of EGF was found to exhibit the beneficial effect on edematous cerulein-induced pancreatitis. Therefore, we decided to determine the influence of EGF on necro-hemorrhagic pancreatitis induced by ischemia and reperfusion (I/R). Acute pancreatitis was induced in rats by restricting the pancreatic blood flow (PBF) in the inferior splenic artery for 30 min using microvascular clips. EGF was administered three times daily (10 microg/kg per dose s.c.) starting immediately after the clips removal. Rats were sacrificed on day 1, 3, 5, 10 and 21 following ischemia. PBF was measured using a laser Doppler flowmeter. Morphological signs of pancreatitis, as well as the levels of plasma amylase, lipase, interleukin-1beta and interleukin-10 concentration and pancreatic cell proliferation were examined. Results: Ischemia with reperfusion caused acute necro-hemorrhagic pancreatitis with a histological and biochemical manifestation of pancreatic damage, followed by a spontaneous regeneration. The administration of EGF caused the reduction in the histological signs of pancreatic damage, such as necrosis, edema and leukocyte infiltration, and accelerated the pancreatic repair. Also, EGF treatment significantly attenuated the reduction in pancreatic blood flow and DNA synthesis. The activity of plasma amylase and lipase, as well as plasma interleukin-1beta and interleukin-10 concentrations were decreased in EGF treated animals. CONCLUSIONS: EGF exerts beneficial influence on the course of I/R induced pancreatitis and this effect seems to be related to the reduction in the activation of pro-inflammatory interleukin cascade, the improvement of PBF, and the increase in pancreatic cell growth.  相似文献   

13.
Caerulein-induced acute pancreatitis was studied in rats. Consistent with this type of acute pancreatitis morphological (edema, leukocytic infiltration and acinar cell vaculization) and biochemical (increase in pancreatic protein content. PAF release and serum amylase) changes developed 5 hours after caerulein administration. In addition increase in pancreatic weight and decrease in pancreatic blood flow were noticed. PAF administration caused pancreatic damage similar in some parameters to caerulein-induced pancreatitis, along with reduction of pancreatic blood flow, increase in pancreatic protein content, and serum amylase. TCV-309, a selective PAF antagonist, administered prior to caerulein and/or PAF, reduced caerulein-induced pancreatitis and prevented PAF-induced pancreatitis. Results of our present studies indicate the crucial role of PAF in pathogenesis of experimental acute pancreatitis.  相似文献   

14.

Objective

Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms.

Methods

Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20?μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR.

Results

Dexmedetomidine at 20?μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20?μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models.

Conclusion

Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression.  相似文献   

15.
Pancreatic caerulein-induced activation of c-Jun NH(2)-terminal kinase (JNK) has been reported, and JNK has been proposed as a mediator during induction of hyperstimulated pancreatitis. CEP-1347 has recently been described as a specific JNK inhibitor. We tested whether CEP-1347 inhibits caerulein-induced pancreatic JNK activation in isolated acini and in vivo. CEP-1347 dose dependently inhibited acinar caerulein-induced JNK activation with nearly complete inhibition at 2 microM but had no effect on digestive enzyme release. For in vivo studies, rats were pretreated with CEP-1347 before caerulein hyperstimulation. For assessment of JNK activation and histological alterations, animals were killed 30 min or 2 and 4 h after caerulein hyperstimulation, respectively. Pancreatic wet weight, serum enzyme levels, and pancreatic activity of p38 and extracellular signal-regulated kinase (ERK) were also determined. Caerulein hyperstimulation strongly activated JNK, p38, and ERK. CEP-1347 pretreatment dose dependently reduced caerulein-induced pancreatic JNK activation without p38 or ERK inhibition. JNK inhibition also reduced pancreatic edema formation and reduced histological severity of pancreatitis. Thus we show that CEP-1347 inhibits JNK activation in vivo and ameliorates caerulein-induced pancreatitis.  相似文献   

16.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

17.
Acute pancreatitis is a common, and as yet incurable, clinical condition, the incidence of which has been increasing over recent years. Chemokines are believed to play a key role in the pathogenesis of acute pancreatitis. We have earlier shown that treatment with a neutralizing antibody against CINC, a CXC chemokine, protects rats against acute pancreatitis-associated lung injury. The hexapeptide antileukinate (Ac-RRWWCR-NH2) is a potent inhibitor of binding of CXC chemokines to the receptors (CXCR2). This study aims to evaluate the effect of treatment with antileukinate on acute pancreatitis and the associated lung injury in mice. Acute pancreatitis was induced in adult male Swiss mice by hourly intra-peritoneal injections of caerulein (50 microg/kg/h) for 10 h. Antileukinate (52.63 mg/kg, s.c.) was administered to mice either 30 min before or 1 h after starting caerulein injections. Severity of acute pancreatitis was determined by measuring plasma amylase, pancreatic water content, pancreatic myeloperoxidase (MPO) activity, pancreatic macrophage inflammatory protein-2 (MIP-2) levels and histological examination of sections of pancreas. A rise in lung MPO activity and histological evidence of lung injury in lung sections was used as criteria for pancreatitis-associated lung injury. Treatment with antileukinate protected mice against acute pancreatitis and associated lung injury, showing thereby that anti-chemokine therapy may be of value in this condition.  相似文献   

18.
In isolated rat pancreatic acini, protein expression of RhoA and Rho-associated kinase, ROCK-II, and the formation of immunocomplex of RhoA with ROCK-II were enhanced by CCK-8, carbachol, and the phorbol ester TPA. The ROCK-specific inhibitor, Y-27632, did not alter basal amylase secretion, whereas it potentiated CCK-stimulated pancreatic enzyme secretion in vitro. During caerulein-induced pancreatitis occurring in mice in vivo, Y-27632 enhanced serum amylase levels and the formation of interstitial edema and vacuolization at 12-18h after the first injection of caerulein. Y-27632 in turn inhibited the recovery of protein expression of ROCK-II at 18h after the first caerulein injection. These results suggest that RhoA and ROCK-II assemble normal CCK-stimulated pancreatic enzyme secretion and prevent caerulein-induced acute pancreatitis.  相似文献   

19.
20.
Aberrant cytosolic Ca(2+) flux in pancreatic acinar cells is critical to the pathological pancreatic zymogen activation observed in acute pancreatitis, but the downstream effectors are not known. In this study, we examined the role of Ca(2+)-activated protein phosphatase 2B (or calcineurin) in zymogen activation. Isolated pancreatic acinar cells were stimulated with supraphysiological caerulein (100 nM) with or without the calcineurin inhibitors FK506 or cell-permeable calcineurin inhibitory peptide (CiP). Chymotrypsin activity was measured as a marker of zymogen activation, and the percent amylase secretion was used as a measure of enzyme secretion. Cytosolic Ca(2+) changes were recorded in acinar cells loaded with the intermediate Ca(2+)-affinity dye fluo-5F using a scanning confocal microscope. A 50% reduction in chymotrypsin activity was observed after pretreatment with 1 microM FK506 or 10 microM CiP. These pretreatments did not affect amylase secretion or the rise in cytosolic Ca(2+) after caerulein stimulation. These findings suggest that calcineurin mediates caerulein-induced intra-acinar zymogen activation but not enzyme secretion or the initial caerulein-induced cytosolic Ca(2+) signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号