首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

2.
Pancreatic caerulein-induced activation of c-Jun NH(2)-terminal kinase (JNK) has been reported, and JNK has been proposed as a mediator during induction of hyperstimulated pancreatitis. CEP-1347 has recently been described as a specific JNK inhibitor. We tested whether CEP-1347 inhibits caerulein-induced pancreatic JNK activation in isolated acini and in vivo. CEP-1347 dose dependently inhibited acinar caerulein-induced JNK activation with nearly complete inhibition at 2 microM but had no effect on digestive enzyme release. For in vivo studies, rats were pretreated with CEP-1347 before caerulein hyperstimulation. For assessment of JNK activation and histological alterations, animals were killed 30 min or 2 and 4 h after caerulein hyperstimulation, respectively. Pancreatic wet weight, serum enzyme levels, and pancreatic activity of p38 and extracellular signal-regulated kinase (ERK) were also determined. Caerulein hyperstimulation strongly activated JNK, p38, and ERK. CEP-1347 pretreatment dose dependently reduced caerulein-induced pancreatic JNK activation without p38 or ERK inhibition. JNK inhibition also reduced pancreatic edema formation and reduced histological severity of pancreatitis. Thus we show that CEP-1347 inhibits JNK activation in vivo and ameliorates caerulein-induced pancreatitis.  相似文献   

3.
Previous studies have shown that ischemic preconditioning protects several organs, including the pancreas, from ischemia/reperfusion-induced injury. The aim of the investigation was to determine whether ischemic preconditioning affects the course edematous pancreatitis. METHODS: In rats, ischemic preconditioning was performed by short-term clamping the celiac artery. Acute pancreatitis was induced by caerulein. The severity of acute pancreatitis was evaluated between the first and tenth day of inflammation. RESULTS: Ischemic preconditioning applied alone caused a mild pancreatic damage. Combination of ischemic preconditioning with caerulein attenuated the severity of pancreatitis in histological examination and reduced the pancreatitis-evoked increase in plasma lipase and pro-inflammatory interleukin-1beta. This effect was associated with an increase in plasma level of anti-inflammatory interleukin-10 and partial reversion of the pancreatitis-evoked drop in pancreatic DNA synthesis and pancreatic blood flow. In secretory studies, ischemic preconditioning in combination with induction of acute pancreatitis attenuated the pancreatitis-evoked decrease in secretory reactivity of isolated pancreatic acini to stimulation by caerulein. In the initial period of acute pancreatitis, ischemic preconditioning alone and in combination with caerulein-induced acute pancreatitis prolonged the activated partial thromboplastin time (APTT), increased plasma level of D-dimer and shortened the euglobulin clot lysis time. The protective effect of ischemic preconditioning was observed during entire time of experiment and led to acceleration of pancreatic regeneration. CONCLUSIONS: Ischemic preconditioning reduces the severity of caerulein-induced pancreatitis and accelerates pancreatic repair; and this effect is related to the activation of fibrinolysis and reduction of inflammatory process.  相似文献   

4.
Aberrant cytosolic Ca(2+) flux in pancreatic acinar cells is critical to the pathological pancreatic zymogen activation observed in acute pancreatitis, but the downstream effectors are not known. In this study, we examined the role of Ca(2+)-activated protein phosphatase 2B (or calcineurin) in zymogen activation. Isolated pancreatic acinar cells were stimulated with supraphysiological caerulein (100 nM) with or without the calcineurin inhibitors FK506 or cell-permeable calcineurin inhibitory peptide (CiP). Chymotrypsin activity was measured as a marker of zymogen activation, and the percent amylase secretion was used as a measure of enzyme secretion. Cytosolic Ca(2+) changes were recorded in acinar cells loaded with the intermediate Ca(2+)-affinity dye fluo-5F using a scanning confocal microscope. A 50% reduction in chymotrypsin activity was observed after pretreatment with 1 microM FK506 or 10 microM CiP. These pretreatments did not affect amylase secretion or the rise in cytosolic Ca(2+) after caerulein stimulation. These findings suggest that calcineurin mediates caerulein-induced intra-acinar zymogen activation but not enzyme secretion or the initial caerulein-induced cytosolic Ca(2+) signal.  相似文献   

5.
6.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists, such as the thiazolidinediones (TZDs), decrease acute inflammation in both pancreatic cell lines and mouse models of acute pancreatitis. Since PPAR-gamma agonists have been shown to exert some of their actions independent of PPAR-gamma, the role of PPAR-gamma in pancreatic inflammation has not been directly tested. Furthermore, the differential role of PPAR-gamma in endodermal derivatives (acini, ductal cells, and islets) as opposed to the endothelial or inflammatory cells is unknown. To determine whether the effects of a TZD, rosiglitazone, on caerulein-induced acute pancreatitis are dependent on PPAR-gamma in the endodermal derivatives, we created a cell-type specific knock out of PPAR-gamma in pancreatic acini, ducts, and islets. PPAR-gamma knockout animals show a greater response in some inflammatory genes after caerulein challenge. The anti-inflammatory effect of rosiglitazone on edema, macrophage infiltration, and expression of the proinflammatory cytokines is significantly decreased in pancreata of the knockout animals compared with control animals. However, rosiglitazone retains its effect in the lungs of the pancreatic-specific PPAR-gamma knockout animals, likely due to direct anti-inflammatory effect on lung parenchyma. These data show that the PPAR-gamma in the pancreatic epithelia and islets is important in suppressing inflammation and is required for the anti-inflammatory effects of TZDs in acute pancreatitis.  相似文献   

7.
8.
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.  相似文献   

9.
Hydrogen sulphide (H(2)S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-gamma-lyase (CSE) is a major H(2)S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H(2)S and SP in pulmonary inflammation as well as a pro-inflammatory role of H(2)S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H(2)S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H(2)S levels and pancreatic H(2)S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H(2)S may be mediated by SP-NK-1R pathway in acute pancreatitis.  相似文献   

10.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 microg/kg caerulein, L-arginine used for NO induction and N(omega)-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

11.
Activation of nuclear factor kappaB (NF-kappaB) and caspases may greatly amplify inflammation and cell damage in addition to that directly exerted by free radicals. Since reactive oxygen species (ROS) are involved in acute pancreatitis, we studied whether the administration of chondroitin-4-sulphate (C4S), in addition to its antioxidant activity, was able to modulate NF-kappaB and caspase activation in an experimental model of caerulein-induced acute pancreatitis in mice. Hyperstimulating doses of caerulein (50 microg/ kg), five injections per mouse given at hourly intervals produced the following: high serum lipase and amylase activity; lipid peroxidation, evaluated by 8-isoprostane concentrations; loss of antioxidant defenses such as glutathione reductase (GR) activity; NF-kappaB activation and loss of cytoplasmic IkappaBalpha protein; increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), caspase-3, and caspase-7 gene expression and their related protein; accumulation and activation of neutrophils in the damaged tissue, evaluated by elastase (ELA) determination; and pancreatic injury, evaluated by histologic analysis. Pretreatment of mice with different doses of C4S, given 1 hr before caerulein injections and 1 and 2 hrs after the last caerulein injection, reduced lipid peroxidation, inhibited NF-kappaB translocation and cytoplasmic IkappaBalpha protein loss, decreased TNF-alpha, IL-6, and caspase gene expression and their related protein levels, limited endogenous antioxidant depletion, and reduced tissue neutrophils accumulation and tissue damage. Since molecules with antioxidant activity can block NF-kappaB and apoptosis activation, we suggest that C4S administration is able to block NF-kappaB and caspase activation by reducing the oxidative burst.  相似文献   

12.
This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 µg/kg caerulein, L-arginine used for NO induction and Nω-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.  相似文献   

13.
Vacuolar ATPase regulates zymogen activation in pancreatic acini   总被引:4,自引:0,他引:4  
Supramaximal concentrations of cholecystokinin or its analogue caerulein have been shown to stimulate the proteolytic activation of zymogens within the pancreatic acinar cell and initiate acute pancreatitis. Previous studies suggest that a low pH compartment might be required for activation. To test this hypothesis, the effects of agents that modulate intracellular pH on caerulein-induced trypsin and chymotrypsin activation were studied. Pretreatment of pancreatic acini with the proto-ionophore monensin (10 microM) and the weak base chloroquine (40 microM) inhibited activation. Pre-incubation with the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A(1) and concanamycin A also decreased activation in a concentration-dependent manner with 50% inhibition at approximately 50 and 25 nM, respectively. Caerulein stimulation caused a time- and concentration-dependent translocation of soluble V-ATPase V(1) subunits to a membrane fraction, a marker of V-ATPase activation. Carbachol also stimulated translocation at supramaximal concentrations. Elevation of cytosolic Ca(2+) by thapsigargin was sufficient to induce translocation. Thus, stimulation of V-ATPase activity appears to be required for agonist-induced zymogen activation in the pancreatic acinar cell.  相似文献   

14.
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10(-10) to 10(-7) M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of >or=2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation.  相似文献   

15.

Background and Aims

Heat shock protein (Hsp) 72 is a molecular chaperone which is upregulated in response to a variety of stress situations and has a general cytoprotective function. Increased Hsp72 levels were implicated in protection from acute pancreatitis; a hypothesis which was not tested in a transgenic mouse model yet.

Methods

To analyze the role of Hsp72 during acute pancreatitis, well-characterized transgenic animals overexpressing rat Hsp72 (Hsp72 mice) under the control of the ß-actin promoter were subjected to caerulein- and L-arginine-induced acute pancreatitis. The severity of experimental pancreatitis was determined via serum lipase levels, morphometric evaluation and quantification of pancreatic edema/inflammation.

Results

Hsp72 mice displayed ∼100-times Hsp72 overexpression, but no changes in the remaining chaperones. Robust Hsp72 signal was observed in pancreatic acini, but not in islets or ductal cells. In both models, elevated Hsp72 did not protect from development of acute pancreatitis and the pancreatitis-associated lung injury, but accelerated recovery from caerulein-induced tissue injury (lower lipase levels, edema, inflammation and necrosis 36 h after caerulein administration). The observed protective function of Hsp72 in caerulein-induced pancreatitis is likely due to an attenuated NF-κB signalling.

Conclusions

Hsp72 overexpression accelerates the recovery from acute pancreatitis and may represent a potential treatment strategy.  相似文献   

16.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

17.
Supramaximal stimulation of the rat pancreas with CCK, or its analog caerulein, triggers acute pancreatitis and a number of pancreatitis-associated acinar cell changes including intracellular activation of digestive enzyme zymogens and acinar cell injury. It is generally believed that some of these various acinar cell responses to supramaximal secretagogue stimulation are interrelated and interdependent. In a recent report, Lu et al. showed that secretin, by causing generation of cAMP and activation of PKA, sensitizes acinar cells to secretagogue-induced zymogen activation, and, as a result, submaximally stimulating concentrations of caerulein can, in the presence of secretin, trigger intracellular zymogen activation. We found that secretin also sensitizes acinar cells to secretagogue-induced cell injury and to subapical F-actin redistribution but that it did not alter the caerulein concentration dependence of other pancreatitis-associated changes such as the induction of a peak plateau intracellular [Ca(2+)] rise, inhibition of secretion, activation of ERK1/2, and activation of NF-kappaB. The finding that secretin sensitizes acinar cells to both intracellular zymogen activation and cell injury is consistent with the concept that these two early events in pancreatitis are closely interrelated and, possibly, interdependent. On the other hand, the finding that, in the presence of secretin, caerulein can trigger subapical F-actin redistribution without inhibiting secretion challenges the concept that disruption of the subapical F-actin web is causally related to high-dose secretagogue-induced inhibition of secretion in pancreatic acinar cells.  相似文献   

18.
Intracellular Ca(2+)-changes not only participate in important signaling pathways but have also been implicated in a number of disease states including acute pancreatitis. To investigate the underlying mechanisms in an experimental model mimicking human gallstone-induced pancreatitis, we ligated the pancreatic duct of Sprague-Dawley rats and NMRI mice for up to 6 h and studied intrapancreatic changes including the dynamics of [Ca(2+)](i) in isolated acini. In contrast to bile duct ligation, pancreatic duct obstruction induced intra-pancreatic trypsinogen activation, leukocytosis, hyperamylasemia, and pancreatic edema and increased lung myeloperoxidase activity. Although resting [Ca(2+)](i) in isolated acini rose by 45% to 205 +/- 7 nmol, the acetylcholine- and cholecystokinin (CCK)-stimulated calcium peaks as well as the amylase secretion declined, but neither the [Ca(2+)](i)-signaling pattern nor the amylase output in response to the Ca(2+)-ATPase inhibitor thapsigargin nor the secretin-stimulated amylase release were impaired by pancreatic duct ligation. On the single cell level pancreatic duct ligation reduced the percentage of cells in which submaximal secretagogue stimulation was followed by a physiological response (i.e. Ca(2+) oscillations) and increased the percentage of cells with a pathological response (i.e. peak plateau or absent Ca(2+) signal). Moreover, it reduced the frequency and amplitude of Ca(2+) oscillation as well as the capacitative Ca(2+) influx in response to secretagogue stimulation. Serum pancreatic enzyme elevation as well as trypsinogen activation was significantly reduced by pretreatment of animals with the calcium chelator BAPTA-AM. These experiments suggest that pancreatic duct obstruction rapidly changes the physiological response of the exocrine pancreas to a Ca(2+)-signaling pattern that has been associated with premature digestive enzyme activation and the onset of pancreatitis, both of which can be prevented by administration of an intracellular calcium chelator.  相似文献   

19.
Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to the subsequent systemic inflammatory response, which may result in multiple organ dysfunction and death. Inflammatory mediators, including chemokines and substance P (SP), are known to play a crucial role in the pathogenesis of acute pancreatitis. It has been shown that pancreatic acinar cells produce the chemokine monocyte chemoattractant protein-1 (MCP-1) in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Similarly, SP levels in the pancreas and pancreatic acinar cell expression of neurokinin-1 receptor, the primary receptor for SP, are both increased during secretagogue-induced experimental pancreatitis. This study aims to examine the functional consequences of exposing mouse pancreatic acinar cells to SP and to determine whether it leads to proinflammatory signaling, such as production of chemokines. Exposure of mouse pancreatic acini to SP significantly increased synthesis of MCP-1, macrophage inflammatory protein-1alpha (MIP-1alpha), as well as MIP-2. Furthermore, SP also increased NF-kappaB activation. The stimulatory effect of SP was specific to chemokine synthesis through the NF-kappaB pathway, since the increase in chemokine production was completely attenuated when pancreatic acini were pretreated with the selective NF-kappaB inhibitor NF-kappaB essential modulator-binding domain peptide. This study shows that SP-induced chemokine synthesis in mouse pancreatic acinar cells is NF-kappaB dependent.  相似文献   

20.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号