首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Control of Color in Birds   总被引:2,自引:0,他引:2  
SYNOPSIS. The colors of birds result from deposition of pigments—mainlymelanins and carotenoids—in integumentary structures,chiefly the feathers. The plumages of birds indicate their age,sex, and mode of living, and play important roles in camouflage,mating, and establishment of territories. Since feathers aredead structures, change of color of feathers is effected throughdivestment (molt) and replacement. The color and pattern ofa feather are determined by the interplay of genetic and hormonalinfluences prevailing in its base during regeneration. Mostbirds replace their feathers at least once annually. Some wearthe same kind of basic plumage all the time butothers alternatea basic and breeding plumage, either in one (the male) or bothsexes. Still others may have more than two molts, adding supplementalplumage at certain times in the plumage cycle. The varietiesof patterns of molt, the kinds of plumage, and the colors andpatterns of feathers among birds apparently are the result ofseveral kinds of selection pressures working through evolution.  相似文献   

2.
Molt is critical for birds as it replaces damaged feathers and worn plumage, enhancing flight performance, thermoregulation, and communication. In passerines, molt generally occurs on the breeding grounds during the postbreeding period once a year. However, some species of migrant passerines that breed in the Nearctic and Western Palearctic regions have evolved different molting strategies that involve molting on the overwintering grounds. Some species forego molt on the breeding grounds and instead complete their prebasic molt on the overwintering grounds. Other species molt some or all feathers a second time (prealternate molt) during the overwintering period. Using phylogenetic analyses, we explored the potential drivers of the evolution of winter molts in Nearctic and Western Palearctic breeding passerines. Our results indicate an association between longer photoperiods and the presence of prebasic and prealternate molts on the overwintering grounds for both Nearctic and Western Palearctic species. We also found a relationship between prealternate molt and generalist and water habitats for Western Palearctic species. Finally, the complete prealternate molt in Western Palearctic passerines was linked to longer days on the overwintering grounds and longer migration distance. Longer days may favor the evolution of winter prebasic molt by increasing the time window when birds can absorb essential nutrients for molt. Alternatively, for birds undertaking a prealternate molt at the end of the overwintering period, longer days may increase exposure to feather‐degrading ultra‐violet radiation, necessitating the replacement of feathers. Our study underlines the importance of the overwintering grounds in the critical process of molt for many passerines that breed in the Nearctic and Western Palearctic regions.  相似文献   

3.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

4.
Laysan and black-footed albatrosses, Phoebastria immutabilis and P . nigripes , exhibit both annual and biennial breeding frequencies, and annually replace flight feathers in patterns that can be described as large, small or medium in extent. Large molts are temporally incompatible with successful breeding. Small molts are temporally compatible with the longest breeding seasons. Medium molts are compatible with shorter, but still successful breeding seasons. On average, large and small molts combined replace the same feathers with the same frequencies as two medium molts combined. Thus, large and small annual molt patterns combined provide a mechanism for "transferring time from one year to another" enabling extended breeding seasons every other year, and thus biennial breeding. Medium-sized molts are compatible with annual breeding. Among multiple albatross species, large-scale, annual molt patterns can shift in response to shifting breeding frequencies, but there may be a time lag in the response. A newly identified period of rapid fattening following molt termination and preceding colony arrival suggests albatrosses maintain low fat stores throughout active molt to reduce wing-loading, intensifying temporal trade-offs between flight feather molt and breeding.  相似文献   

5.

Background

Sexual signals, such as bright plumage coloration in passerine birds, reflect individual quality, and testosterone (T) may play a critical role in maintaining signal honesty. Manipulations of T during molt have yielded mixed effects on passerine plumage color, in most cases delaying molt or leading to production of drab plumage. However, the majority of these studies have been conducted on species that undergo a post-nuptial molt when T is low; the role of T in species that acquire breeding plumage during a pre-nuptial molt remains largely unexplored.

Methodology/Principal Findings

We experimentally tested the effects of increased T on plumage color in second-year male red-backed fairy-wrens (Malurus melanocephalus), a species in which after-second-year males undergo a pre-nuptial molt into red/black (carotenoid and melanin-based) plumage and second-year males either assume red/black or brown breeding plumage. T treatment stimulated a rapid and early onset pre-nuptial molt and resulted in red/black plumage acquisition, bill darkening, and growth of the sperm storage organ, but had no effect on body condition or corticosterone concentrations. Control males molted later and assumed brown plumage. T treated males produced feathers with similar but not identical reflectance parameters to those of unmanipulated after-second-year red/black males; while reflectance spectra of red back and black crown feathers were similar, black breast feathers differed in UV chroma, hue and brightness, indicating a potentially age and plumage patch-dependent response to T for melanin- vs. carotenoid-pigmentation.

Conclusions/Significance

We show that testosterone is the primary mechanism functioning during the pre-nuptial molt to regulate intrasexually variable plumage color and breeding phenotype in male red-backed fairy-wrens. Our results suggest that the effects of T on plumage coloration may vary with timing of molt (pre- vs. post-nuptial), and that the role of T in mediating plumage signal production may differ across age classes, plumage patches, and between pigment-types.  相似文献   

6.
Edmund  Wyndham 《Ibis》1981,123(2):145-157
In captive Budgerigars Melopsitticus undulatus moult of primaries started in the middle of the tract and moved progressively inwards and outwards, the inner feathers being replaced faster than the outer ones. Full replacement of primaries took six to eight months and a new cycle of moult usually started before completion of the old cycle. Moult of secondaries followed no clear pattern and occurred less frequently than moult of primaries. Moult of rectrices started with the middle pair and moved progressively outwards on both sides. Complete moult of rectrices took about six months and a new cycle often started before completion of the old. Moult of the head and body occurred intermittently throughout the year. Birds fledged in juvenal plumage, they passed into first basic plumage with a partial moult (head and body feathers) and into definitive basic plumage with a moult of all contour feathers.
In the field in inland mid-eastern Australia, there were some birds replacing feathers and some with complete plumage in most months of the year. Birds with complete plumage may have been between moults or within a moult and between replacement of feathers. The proportion of birds in moult did not increase in intensity after breeding, or cease during breeding or before movements. Some birds of both sexes with gonads in a reproductive condition were replacing feathers. Rirds that were replacing feathers had similar lipid deposits to birds that had a complete plumage.  相似文献   

7.
Many shorebirds travel over large sections of the globe during the course of their annual cycle and use habitats in many different biomes and climate zones. Increasing knowledge of the factors driving variations in shorebird numbers, phenotype and behaviour may allow shorebirds to serve as 'integrative sentinels' of global environmental change. On the basis of numbers, timing of migration, plumage status and body mass, shorebirds could indicate whether ecological and climate systems are generally intact and stable at hemispheric scales, or whether parts of these systems might be changing. To develop this concept, we briefly review the worldwide shorebird migration systems before examining how local weather and global climatic features affect several performance measures of long-distance migrants. What do variations in numbers, phenotype and behaviour tell us about the dependence of shorebirds on weather and climate? How does data on migrating shorebirds integrate global environmental information? Documenting the dependencies between the population processes of shorebirds and global environmental features may be an important step towards assessing the likely effects of projected climate change. In the meantime we can develop the use of aspects of shorebird life histories on large spatial and temporal scales to assay global environmental change.  相似文献   

8.
The function and evolution of avian plumage colouration has been the subject of many studies over the past decade, but virtually all of this research has focused on the plumages of sexually mature individuals. The colours and patterns of juvenal plumage, which is worn by altricial songbirds only for the first few months of life, have been the focus of few studies. We develop the idea that distinctive juvenile appearance may be a signal of sexual immaturity, serving to reduce aggression from conspecific adults. We use a comparative phylogenetic approach to test this hypothesis in the thrushes (Family Turdidae). Honest signals of reproductive immaturity should be more valuable when juveniles fledge into environments with aggressive adult conspecifics. Therefore, we predicted that distinctive juvenile appearance would be more likely to evolve in species with extended breeding seasons and high levels of territoriality. Because many tropical bird species exhibit year‐round territoriality and elongated breeding seasons, we used breeding latitude as a proxy for these variables. As predicted, distinctive juvenile appearance was significantly correlated with occupancy of tropical latitudes. While alternative explanations cannot be ruled out and more tests of the hypothesis are needed, the observed associations between breeding latitude and distinctiveness of juvenal plumage are consistent with our hypothesis that distinctive juvenal plumage evolved as a signal of sexual immaturity.  相似文献   

9.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

10.
11.
Delayed plumage maturation is the delayed acquisition of a definitive colour and pattern of plumage until after the first potential breeding period in birds. Here we provide a comprehensive overview of the numerous studies of delayed plumage maturation and a revised theoretical framework for understanding the function of delayed plumage maturation in all birds. We first distinguish between hypotheses that delayed plumage maturation is attributable to a moult constraint with no adaptive function and hypotheses that propose that delayed plumage maturation is a component of an adaptive life‐history strategy associated with delayed reproductive investment. We then recognize three potential benefits of delayed plumage maturation: crypsis, mimicry and status signaling. Evidence suggests that delayed plumage maturation is not a consequence of developmental constraints and instead represents a strategy to maximize reproductive success in circumstances where young adults cannot effectively compete with older adults for limited resources, particularly breeding opportunities. A multi‐factorial explanation that takes into account lifespan and the degree of competition for limited breeding resources and that combines the benefits of an inconspicuous appearance with the benefits of honest signaling of reduced competitiveness provides a general explanation for the function of delayed plumage maturation in most bird species. Delayed plumage maturation should be viewed as a component of alternative reproductive strategies that can include delay in both plumage and sexual development. Such strategies are frequently facultative, with individuals breeding prior to the acquisition of definitive plumages when conditions are favourable. Presumably, the benefits of delayed plumage maturation ultimately enhance lifetime reproductive success, and studying delayed plumage maturation within the context of lifetime reproductive success should be a goal of future studies.  相似文献   

12.
Carotenoid‐based plumage coloration plays a critical role for both inter‐ and intrasexual communication. Habitat and diet during molt can have important consequences for the development of the ornamental signals used in these contexts. When molt occurs away from the breeding grounds (e.g., pre‐alternate molt on the wintering grounds, or stopover molt), discerning the influence of habitat and diet can be particularly important, as these effects may result in important carryover effects that influence territory acquisition or mate choice in subsequent seasons. Several species of songbirds in western North America, including the Bullock's oriole (Icterus bullockii), migrate from the breeding grounds to undergo a complete prebasic (post‐breeding) molt at a stopover site in the region affected by the Mexican monsoon climate pattern. This strategy appears to have evolved several times independently in response to the harsh, food‐limited late‐summer conditions in the arid West, which contrast strongly with the high productivity driven by heavy rains that is characteristic of the Mexican monsoon region. Within this region, individuals may be able to optimize plumage coloration by molting in favourable areas characterized by high resource abundance. We used stable isotope analysis (δ13C, δ15N) to ask whether the diet and molt habitat/location of Bullock's orioles influenced their expression of carotenoid‐based plumage coloration as well as plumage carotenoid content and composition. Bullock's orioles with lower feather δ15N values acquired more colorful plumage (orange‐shifted hue) but had feathers with lower total carotenoid concentration, lower zeaxanthin concentration, and marginally lower canthaxanthin and lutein concentration. Examining factors occurring throughout the annual cycle are critical for understanding evolutionary and ecological processes. Here, we demonstrate that conditions experienced during a stopover molt, occurring hundreds to thousands of kilometers from the breeding grounds, influence the production of ornamental plumage coloration, which may carryover to influence inter‐ and intrasexual signaling in subsequent seasons.  相似文献   

13.
The effects of elevated testosterone on plumage hue in male House Finches   总被引:3,自引:0,他引:3  
The majority of studies examining the role of hormones in the proximate mechanisms of plumage coloration in birds have focused on intersexual differences (plumage dichromatism) and on structural- or melanin-based plumage coloration. The relationship between hormones and carotenoid-based plumage color, and in particular intrasexual plumage color variation, has received little attention. We manipulated testosterone levels of both captive and wild male House Finches to determine whether testosterone influences the expression of male plumage color in this species. We found that in captive male House Finches elevated testosterone delayed molt and resulted in drabber, less red plumage, even when birds were supplemented with dietary carotenoids. Elevated testosterone also resulted in drab plumage color in wild males, and appeared to delay molt in wild birds as well. Wild males implanted with testosterone showed wide variation in expression of plumage coloration. Those implanted early in the year molted plumage similar in color to their pre-treatment plumage, but those implanted later molted substantially duller plumage, possibly because delayed molt resulting from elevated testosterone caused these males to molt when carotenoid pigments were not available in sufficient amounts. These observations have the potential to explain previously reported relationships between plumage color and behavior in male House Finches, and highlight the importance of considering the proximate mechanisms of plumage coloration in avian sexual selection.  相似文献   

14.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt when all feathers are replaced. To explain why, we proposed that the birds downregulate natural CORT release during molt in order to avoid CORT's degradative effects on proteins and its inhibition of protein synthesis. If CORT exerted these effects during molt, it could slow protein deposition during feather production and potentially result in a longer period of degraded flight performance. To test this hypothesis, either empty or CORT-filled silastic implants were inserted into captive European starlings (Sturnus vulgaris) and white-crowned sparrows (Zonotrichia leucophrys) undergoing induced (feather replacement after plucking) and natural molts. We then measured the rate of feather re-growth by regularly measuring the length of primary, secondary, and tail feathers. CORT implanted birds showed a significantly decreased rate of feather growth compared to control animals. Basal CORT concentrations of induced molt and non-molting birds were also compared but no difference was noted. The results suggest a tradeoff; a complete set of new feathers may be more important to the survival of a bird than the ability of CORT to respond maximally to a stressor.  相似文献   

15.
The Florida Scrub-Jay is a monogamous cooperative breeder in which both males and females display extensive structurally based blue plumage. Juveniles of this species exhibit blue tail and wing feathers that they begin growing as nestlings, and some of these feathers are retained throughout their first year. Although the birds appear to be sexually monochromatic, we assessed whether cryptic dichromatism exists in both the magnitude and pattern of coloration in tail feathers of juvenile Florida Scrub-Jays. We then determined whether variation in plumage coloration is associated with nutritional condition during molt. Tails of juvenile male Florida Scrub-Jays exhibit a greater proportion of UV reflectance than those of females. Mass at age 11 days and ptilochronology of the juvenile tail feathers were used as measures of individual nutritional condition during feather growth, and the latter was found to be positively associated with UV chroma. These data demonstrate that Florida Scrub-Jays are sexually dichromatic and suggest that variation in plumage color may be condition dependent, although we cannot rule out alternative explanations. Juvenile plumage coloration, therefore, has the potential to function as a signal of individual quality in both males and females.  相似文献   

16.
Sibley and Ahlquist compared the single-copy nuclear DNA sequences of the hominoid primates using DNA-DNA hybridization. From this data set they estimated a phylogeny that clusters man and chimpanzees using a distance Wagner procedure. However, no assessment of statistical confidence in this estimated phylogeny was made, despite the fact that their data set contains internal inconsistencies concerning the correct branching order. This paper presents a modification of Pielou's Q- statistic that allows one to make nonparametric tests of phylogenetic relationship from distance data. The results of this analysis indicate that the estimated phylogeny of Sibley and Ahlquist is without statistical significance owing to the internal inconsistencies of the data set. A survey and additional analyses of other types of molecular data indicate that the phylogeny that clusters chimpanzees and gorillas and has the human lineage splitting off earlier is statistically consistent with all the molecular data (including the DNA-DNA hybridization data), whereas the phylogeny estimated by Sibley and Ahlquist can be rejected at the 5% level using the data on restriction- endonuclease sites in the mitochondrial genome.   相似文献   

17.
Moyer  Brett R.  Gardiner  David W.  Clayton  Dale H. 《Oecologia》2002,131(2):203-210

Animals possess a variety of well-documented defenses against ectoparasites, including morphological, behavioral, and immune responses. Another possible defense that has received relatively little attention is the shedding of the host's exterior. The conventional wisdom is that ectoparasite abundance is reduced when birds molt their feathers, mammals molt their hair, and reptiles shed their skin. We carried out an experimental test of this hypothesis for birds by manipulating molt in feral pigeons (Columba livia) infested with feather lice (Phthiraptera: Ischnocera). We used two standard methods, visual examination and body washing, to quantify the abundance of lice on the birds. The visual data indicated a significant effect of molt on lice. However, the more robust body washing method showed that molt had no effect on louse abundance. Two factors caused visual examination to underestimate the number of lice on molting birds. First, molt replaces worn feathers with new, lush plumage that obscures lice during visual examination. Second, we discovered that lice actively seek refuge inside the sheath that encases developing feathers, where the lice cannot be seen. The apparent reduction in louse abundance caused by these factors may account for the conventional wisdom that feather molt reduces ectoparasite abundance in birds. In light of our experimental results, we argue that it is necessary to reinterpret the conclusions of previous studies that were based on observational data. Additional experiments are needed to test whether shedding of the host's exterior reduces ectoparasites in other birds, mammals, and reptiles, similar to the impact of facultative leaf drop on herbivorous insects on trees.

  相似文献   

18.
Migration distances of shorebird species correlate with life history strategies. To assess age‐specific migratory preparation and adult wing‐molt strategies, we studied Western Sandpipers (Calidris mauri) and Semipalmated Sandpipers (C. pusilla) with different migration routes at the Paracas National Reserve in Perú, one of the most austral non‐breeding areas for these sandpipers, from 2012 to 2015. Western Sandpipers breed near the Bering Sea, ~11,000 km from Paracas. Semipalmated Sandpiper populations at Paracas are a mixture of short‐billed birds from western Arctic breeding sites, plus long‐billed birds from eastern sites, ~8000 km distant. Adults of both species arrive in October with primary feathers already partially renewed so wing molt starts at sites further north. Semipalmated Sandpipers with longer bills completed wing molt later than shorter billed birds. Adults of both species prepared for migration in February and March. No juvenile Western Sandpipers prepared for migration, confirming the “slow” over‐summering life history strategy of more southerly non‐breeding populations. Juvenile Semipalmated Sandpipers showed bimodality in strategies. Most showed no migratory preparation, but, during three non‐breeding periods, from 27% to 31% fattened, molted, and partially replaced outer primaries during the pre‐migratory period. Juveniles with longer culmens were heavier and tended to have more alternate plumage. Juveniles that were partially molting primaries had longer culmens and more alternate plumage. Juvenile Semipalmated Sandpipers from eastern‐breeding populations thus have a higher propensity for a fast life history strategy, and western birds a slow one, at this non‐breeding site in Peru. Western‐breeding Semipalmated Sandpiper populations thus resemble Western Sandpipers, suggesting a common, possibly distance‐related, effect on life history strategy.  相似文献   

19.
Molt is an important life history event for mammals occurring in temperate and cold zones. In the present paper, I investigate the pattern, timing and duration of seasonal molts of the Cape haresLepus capensis Linnaeus, 1798 in northern China, by tracing and scoring the process of each molt quantitatively. All the seasonal molts in both overwintering and juvenile hares went through a similar order: midback (together with nape), flanks, belly, upper tail, and legs. Yet, there was a relatively confused pattern of replacement during the heaviest molting period of overwintering hares, compared to a relatively uniform pattern among juvenile hares. Overwintering hares experienced a spring and a fall molt. The fall molt was already initiated prior to completion of the spring molt and had a relatively short duration. Juveniles born early in the year (before July), before their fall molt, had undergone a postnatal molt, but those born late (July to September) had not. The juvenile fall molt had already begun when the postnatal molt was at its later stages. These facts suggest that the time budget for fall molt is tight and seasonally constrained. The timing and duration of molts in the overwintering and early-born juvenile hares were independent of individual age. Among overwintering hares, both sexes started spring molt synchronously, but the females were behind the males in late period of this molt and consequently further delayed throughout subsequent fall molt. This may be related to a higher cost of reproduction in females. No sexual difference was found in the molting progress of juvenile hares.  相似文献   

20.
Many shorebird populations are declining throughout the world, concurrent with declines and degradation of wetland habitats. Such declines necessitate a more consistent approach towards conserving habitats used by shorebird populations. Individuals of many shorebird species congregate in specific areas during their non-breeding season. Worldwide, non-breeding areas are designated as ‘important’ for shorebird conservation based primarily on the abundance of birds found in an area. However, the boundaries of any area are often defined with incomplete information regarding how shorebirds use that habitat. This paper discusses examples in Australia where improved knowledge of shorebird habitat use led to the identification of very different boundaries of important shorebird areas than those identified originally. We highlight how simple questioning of those who count shorebirds in an area, led to an improved understanding of which areas were apparently used by the same local population of non-breeding shorebirds. Subsequent analysis of available count, recapture and/or home range data of particular shorebird species is needed to verify expert opinion regarding most of these boundaries. We review how enhanced boundaries improve the ability of shorebird monitoring to detect population changes; allow management of shorebird habitats at relevant spatial scales; and lead to appropriate designations of important areas. While the kinds of approaches to boundary setting described here are not new, they are not consistently applied worldwide. We suggest additional guidelines to those produced under the Ramsar Convention in regard to designating important areas. We also call for more studies on the movements of migratory shorebirds during the non-breeding season to direct more consistent boundary setting around important non-breeding habitats used by local populations of migratory shorebirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号