首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a new method for detecting conserved RNA secondary structures in a family of related RNA sequences. Our method is based on a combination of thermodynamic structure prediction and phylogenetic comparison. In contrast to purely phylogenetic methods, our algorithm can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability. The procedure constructs a prediction only for those parts of sequences that are consistent with a single conserved structure. Our implementation produces reasonable consensus structures without user interference. As an example we have analysed the complete HIV-1 and hepatitis C virus (HCV) genomes as well as the small segment of hantavirus. Our method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV.  相似文献   

2.
A new approach is proposed for determining common RNA secondary structures within a set of homologous RNAs. The approach is a combination of phylogenetic and thermodynamic methods which is based on the prediction of optimal and suboptimal secondary structures, topological similarity searches and phylogenetic comparative analysis. The optimal and suboptimal RNA secondary structures are predicted by energy minimization. Structural comparison of the predicted RNA secondary structures is used to find conserved structures that are topologically similar in all these homologous RNAs. The validity of the conserved structural elements found is then checked by phylogenetic comparison of the sequences. This procedure is used to predict common structures of ribonuclease P (RNAase P) RNAs.  相似文献   

3.
王金华  骆志刚  管乃洋  严繁妹  靳新  张雯 《遗传》2007,29(7):889-897
多数RNA分子的结构在进化中是高度保守的, 其中很多包含伪结。而RNA伪结的预测一直是一个棘手问题, 很多RNA 二级结构预测算法都不能预测伪结。文章提出一种基于迭代法预测带伪结RNA 二级结构的新方法。该方法在给潜在碱基对打分时综合了热力学和协变信息, 通过基于最小自由能RNA折叠算法的多次迭代选出所有的碱基对。测试结果表明: 此方法几乎能预测到所有的伪结。与其他方法相比, 敏感度接近最优, 而特异性达到最优。  相似文献   

4.
RNA secondary structures are important in many biological processes and efficient structure prediction can give vital directions for experimental investigations. Many available programs for RNA secondary structure prediction only use a single sequence at a time. This may be sufficient in some applications, but often it is possible to obtain related RNA sequences with conserved secondary structure. These should be included in structural analyses to give improved results. This work presents a practical way of predicting RNA secondary structure that is especially useful when related sequences can be obtained. The method improves a previous algorithm based on an explicit evolutionary model and a probabilistic model of structures. Predictions can be done on a web server at http://www.daimi.au.dk/~compbio/pfold.  相似文献   

5.
The existence and functional importance of RNA secondary structure in the replication of positive-stranded RNA viruses is increasingly recognized. We applied several computational methods to detect RNA secondary structure in the coding region of hepatitis C virus (HCV), including thermodynamic prediction, calculation of free energy on folding, and a newly developed method to scan sequences for covariant sites and associated secondary structures using a parsimony-based algorithm. Each of the prediction methods provided evidence for complex RNA folding in the core- and NS5B-encoding regions of the genome. The positioning of covariant sites and associated predicted stem-loop structures coincided with thermodynamic predictions of RNA base pairing, and localized precisely in parts of the genome with marked suppression of variability at synonymous sites. Combined, there was evidence for a total of six evolutionarily conserved stem-loop structures in the NS5B-encoding region and two in the core gene. The virus most closely related to HCV, GB virus-B (GBV-B) also showed evidence for similar internal base pairing in its coding region, although predictions of secondary structures were limited by the absence of comparative sequence data for this virus. While the role(s) of stem-loops in the coding region of HCV and GBV-B are currently unknown, the structure predictions in this study could provide the starting point for functional investigations using recently developed self-replicating clones of HCV.  相似文献   

6.
A total of 4051 suboptimal secondary structures are predicted by folding the 5' non-coding region of ten polioviruses, five human rhinoviruses and three coxsackieviruses using our new suboptimal folding algorithm for the prediction of both optimal and suboptimal RNA secondary structures. A comparative analysis of these RNA secondary structures reveals the conservation of common secondary structure that can be supported by phylogenetic data. The thermodynamic stability and statistical significance of these predicted, conserved helical elements are assessed and significant structure motifs in the 5' non-coding region are proposed. The possible roles of these structure motifs in the virus life cycle are discussed.  相似文献   

7.
8.
Fang X  Luo Z  Yuan B  Wang J 《Bioinformation》2007,2(5):222-229
The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous sequences. However, most of existing comparative methods are vulnerable to alignment errors and thus are of low accuracy in practical application. Here we improve the prediction of RNA secondary structure by detecting and assessing conserved stems shared by all sequences in the alignment. Our method can be summarized by: 1) we detect possible stems in single RNA sequence using the so-called position matrix with which some possibly paired positions can be uncovered; 2) we detect conserved stems across multiple RNA sequences by multiplying the position matrices; 3) we assess the conserved stems using the Signal-to-Noise; 4) we compute the optimized secondary structure by incorporating the so-called reliable conserved stems with predictions by RNAalifold program. We tested our method on data sets of RNA alignments with known secondary structures. The accuracy, measured as sensitivity and specificity, of our method is greater than predictions by RNAalifold.  相似文献   

9.
Visually examining RNA structures can greatly aid in understanding their potential functional roles and in evaluating the performance of structure prediction algorithms. As many functional roles of RNA structures can already be studied given the secondary structure of the RNA, various methods have been devised for visualizing RNA secondary structures. Most of these methods depict a given RNA secondary structure as a planar graph consisting of base-paired stems interconnected by roundish loops. In this article, we present an alternative method of depicting RNA secondary structure as arc diagrams. This is well suited for structures that are difficult or impossible to represent as planar stem-loop diagrams. Arc diagrams can intuitively display pseudo-knotted structures, as well as transient and alternative structural features. In addition, they facilitate the comparison of known and predicted RNA secondary structures. An added benefit is that structure information can be displayed in conjunction with a corresponding multiple sequence alignments, thereby highlighting structure and primary sequence conservation and variation. We have implemented the visualization algorithm as a web server R-chie as well as a corresponding R package called R4RNA, which allows users to run the software locally and across a range of common operating systems.  相似文献   

10.
A number of non-coding RNA are known to contain functionally important or conserved pseudoknots. However, pseudoknotted structures are more complex than orthodox, and most methods for analyzing secondary structures do not handle them. I present here a way to decompose and represent general secondary structures which extends the tree representation of the stem-loop structure, and use this to analyze the frequency of pseudoknots in known and in random secondary structures. This comparison shows that, though a number of pseudoknots exist, they are still relatively rare and mostly of the simpler kinds. In contrast, random secondary structures tend to be heavily knotted, and the number of available structures increases dramatically when allowing pseudoknots. Therefore, methods for structure prediction and non-coding RNA identification that allow pseudoknots are likely to be much less powerful than those that do not, unless they penalize pseudoknots appropriately.  相似文献   

11.
Secondary structure prediction for aligned RNA sequences   总被引:19,自引:0,他引:19  
Most functional RNA molecules have characteristic secondary structures that are highly conserved in evolution. Here we present a method for computing the consensus structure of a set aligned RNA sequences taking into account both thermodynamic stability and sequence covariation. Comparison with phylogenetic structures of rRNAs shows that a reliability of prediction of more than 80% is achieved for only five related sequences. As an application we show that the Early Noduline mRNA contains significant secondary structure that is supported by sequence covariation.  相似文献   

12.
A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.  相似文献   

13.
14.
The algorithm and the program for the prediction of RNA secondary structure with pseudoknot formation have been proposed. The algorithm simulates stepwise folding by generating random structures using Monte Carlo method, followed by the selection of helices to final structure on the basis of both their probabilities of occurrence in a random structure and free energy parameters. The program versions have been tested on ribosomal RNA structures and on RNAs with pseudoknots evidenced by experimental data. It is shown that the simulation of folding during RNA synthesis improves the results. The introduction of pseudoknot formation permits to predict the pseudoknotted structures and to improve the prediction of long-range interactions. The computer program is rather fast and allows to predict the structures for long RNAs without using large memory volumes in usual personal computer.  相似文献   

15.
Existing computational methods for RNA secondary-structure prediction tacitly assume RNA to only encode functional RNA structures. However, experimental studies have revealed that some RNA sequences, e.g. compact viral genomes, can simultaneously encode functional RNA structures as well as proteins, and evidence is accumulating that this phenomenon may also be found in Eukaryotes. We here present the first comparative method, called RNA-DECODER, which explicitly takes the known protein-coding context of an RNA-sequence alignment into account in order to predict evolutionarily conserved secondary-structure elements, which may span both coding and non-coding regions. RNA-DECODER employs a stochastic context-free grammar together with a set of carefully devised phylogenetic substitution-models, which can disentangle and evaluate the different kinds of overlapping evolutionary constraints which arise. We show that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD.  相似文献   

16.
BACKGROUND: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB toolbox that employs mutual information, or a related covariation measure, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. RESULTS: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction package. CONCLUSION: MIfold provides a useful supplementary tool to programs such as RNA Structure Logo, RNAalifold and COVE, and should be useful for automatically generating structural predictions for databases such as Rfam.  相似文献   

17.
RAG: RNA-As-Graphs database--concepts, analysis, and features   总被引:3,自引:0,他引:3  
MOTIVATION: Understanding RNA's structural diversity is vital for identifying novel RNA structures and pursuing RNA genomics initiatives. By classifying RNA secondary motifs based on correlations between conserved RNA secondary structures and functional properties, we offer an avenue for predicting novel motifs. Although several RNA databases exist, no comprehensive schemes are available for cataloguing the range and diversity of RNA's structural repertoire. RESULTS: Our RNA-As-Graphs (RAG) database describes and ranks all mathematically possible (including existing and candidate) RNA secondary motifs on the basis of graphical enumeration techniques. We represent RNA secondary structures as two-dimensional graphs (networks), specifying the connectivity between RNA secondary structural elements, such as loops, bulges, stems and junctions. We archive RNA tree motifs as 'tree graphs' and other RNAs, including pseudoknots, as general 'dual graphs'. All RNA motifs are catalogued by graph vertex number (a measure of sequence length) and ranked by topological complexity. The RAG inventory immediately suggests candidates for novel RNA motifs, either naturally occurring or synthetic, and thereby might stimulate the prediction and design of novel RNA motifs. AVAILABILITY: The database is accessible on the web at http://monod.biomath.nyu.edu/rna  相似文献   

18.
Secondary structure plays an important role in determining the function of noncoding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even though new methods have been proposed over the past 40 years, the performance of computational prediction methods has stagnated in the last decade. Recently, with the increasing availability of RNA structure data, new methods based on machine learning (ML) technologies, especially deep learning, have alleviated the issue. In this review, we provide a comprehensive overview of RNA secondary structure prediction methods based on ML technologies and a tabularized summary of the most important methods in this field. The current pending challenges in the field of RNA secondary structure prediction and future trends are also discussed.  相似文献   

19.
Hu YJ 《Nucleic acids research》2002,30(17):3886-3893
Given a set of homologous or functionally related RNA sequences, the consensus motifs may represent the binding sites of RNA regulatory proteins. Unlike DNA motifs, RNA motifs are more conserved in structures than in sequences. Knowing the structural motifs can help us gain a deeper insight of the regulation activities. There have been various studies of RNA secondary structure prediction, but most of them are not focused on finding motifs from sets of functionally related sequences. Although recent research shows some new approaches to RNA motif finding, they are limited to finding relatively simple structures, e.g. stem-loops. In this paper, we propose a novel genetic programming approach to RNA secondary structure prediction. It is capable of finding more complex structures than stem-loops. To demonstrate the performance of our new approach as well as to keep the consistency of our comparative study, we first tested it on the same data sets previously used to verify the current prediction systems. To show the flexibility of our new approach, we also tested it on a data set that contains pseudoknot motifs which most current systems cannot identify. A web-based user interface of the prediction system is set up at http://bioinfo. cis.nctu.edu.tw/service/gprm/.  相似文献   

20.
RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 A deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNA(Phe), pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号