首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dysprosium (Dy3+)-activated potassium calcium silicate (K4CaSi3O9) phosphor was prepared using a solid-state synthesis route. The phosphor had a cubic structure with the space group Pa 3 ¯ as confirmed using X-ray diffraction (XRD) measurements. Details of surface morphology and elemental composition of the as-synthesized undoped KCS phosphor was obtained using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. The chemical structure as well as the vibrational modes present in the as-prepared KCS phosphor was analyzed using Fourier transform infrared (FT-IR) spectroscopy. Diffuse reflectance spectra (DRS) were used to determine the optical bandgap of the phosphors and were found to be in the optical range 3.52–3.71 eV. Photoluminescence (PL) spectra showed intense yellow emission corresponding to the 4F9/26H13/2 transition under 350 nm excitation. Commission International de l′Eclairage colour chromaticity coordinates were evaluated using the PL spectral data lie within the white region. Dexter theory and the Inokuti–Hirayama (I–H) model were applied to study the nature of the energy transfer mechanism in the as-prepared phosphors. The relatively high activation energy of the phosphors was evaluated using temperature-dependent PL (TDPL) data and confirmed the high thermal stability of the titled phosphor. The abovementioned results indicated that the as-prepared KCS:Dy3+ phosphor was a promising candidate for n-UV-based white light-emitting diodes.  相似文献   

2.
Gd2O2S:Eu3+ nanophosphors have been successfully synthesized using microwave irradiation and γ‐irradiation methods with polyvinyl pyrrolidone as a stabilizer. The physical and luminescence spectra were compared. The morphologies of both Gd2O2S:Eu3+ nanophosphors were in the hexagonal phase and mainly consisted of spherical nanostructures with diameters of ~90 nm and ~50 nm for both microwave irradiation and γ‐irradiation methods. Upon 325 nm of ultraviolet (UV) light excitation, strong red emissions (626 nm) were observed for both methods; these emissions corresponded to the 5D07F2 transition of Eu3+ ions. However, Gd2O2S:Eu3+ nanophosphors following microwave treatment showed better luminescence intensity than Gd2O2S:Eu3+ nanophosphors treated with γ‐irradiation. This difference was attributed to the crystallinity phase and surface quenching effects of Gd2O2S:Eu3+ nanophosphors. The reaction mechanisms of Gd2O2S:Eu3+ nanophosphors in both methods are discussed in detail.  相似文献   

3.
Luminescent materials used in flat panel displays, compact fluorescent lamps, and light-emitting diodes require high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology to ensure long-term stability. Y2O3:Eu3+ is a widely studied red phosphor known for its characteristic photoluminescence (PL) emission at 613 nm with near-UV excitation at 392 nm. Many methods have been explored to synthesize Y2O3:Eu3+ nanoparticles with exceptional purity, consistent phases, and uniform particle sizes. The aim is to synthesize particles with pristine surfaces, spherical shape, and compact morphology. This study focuses on the low-temperature synthesis and PL investigation of Y2–xO3:Eux3+ nanophosphors using combustion with thioglycerol as fuel. The results are compared with Y2–xO3:Eux3+ red nanophosphors synthesized using wet chemical and nitrate combustion methods. The PL characteristics of the Y2–xO3:Eux3+ nanophosphors were analyzed using PL emission spectroscopy, X-ray diffraction, and scanning electron microscopy. These findings highlight the advantageous properties of the synthesized nanophosphors, such as their suitability for solid-state lighting applications in the lamp industry as highly efficient red phosphors. The combination of high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology contributes to their potential for long-term stability and reliable performance in lighting devices.  相似文献   

4.
Strontium sulphate (SrSO4) is a defect-based photoluminescence material, generally used in thermoluminescence applications, and has been studied for infrared (IR) stimulated visible emission. The SrSO4 particles were synthesized using a precipitation method. The orthorhombic phase of SrSO4 was confirmed from the X-ray diffraction pattern and the formation of micron-sized particles was authenticated from field emission scanning electron micrographs. The elemental composition of oxygen and strontium was determined using energy-dispersive X-ray analysis measurement that confirmed the presence of V O and V Sr intrinsic defects in the material. Photoluminescence investigations showed the presence of various defect bands in the band gap giving rise to intrinsic luminescence in SrSO4. The emission in the visible region was attributed to the defect band arising due to V O . Photoluminescence lifetime measurement confirmed the presence of stable defect states with a lifetime in microseconds. The SrSO4 sample was tested using IR lasers and a red–orange emission spot was observed from the powder sample when excited with IR lasers. The underlying principle for IR-to-visible conversion in the material is a defect-mediated phenomenon that has been described through the energy level diagram of the material.  相似文献   

5.
Naftidrofuryl is a vasodilator medication used for treating cerebral and peripheral vascular diseases. In this study, two spectroscopical techniques, spectrofluorimetric and resonance Rayleigh scattering (RRS), were utilized to quantify naftidrofuryl in its pharmaceutical samples. The developed methodologies in this study rely on a facile process of forming an association complex between erythrosine B reagent and naftidrofuryl under acidic conditions. The fluorimetric assay is based on the ability of naftidrofuryl to quench and decrease the native fluorescence intensity of the reagent when measured at λ emis . = 550 nm ( λ excit . = 526 nm). Under similar reaction conditions, the RRS method relies on the observed amplification in the RRS spectrum of the reagent at a wavelength of 577 nm following its interaction with naftidrofuryl. The methods exhibited linearity within the ranges 0.2–1.6 μg/ml (r2 = 0.999) and 0.1–1.4 μg/ml (r2 = 0.9994), with limit of quantitation values of 0.146 and 0.099 μg/ml, and limit of detection values of 0.048 and 0.032 μg/ml, for the fluorometric and the RRS methods, respectively. Moreover, the quenching between the dye and naftidrofuryl was studied using Stern–Volmer analysis, and the methodologies were experimentally optimized and validated. Additionally, acceptable recoveries were achieved when the procedures were applied to determine naftidrofuryl in pharmaceutical samples.  相似文献   

6.
This article reports on the optical properties of Er3+ ions doped CdO–Bi2O3–B2O3 (CdBiB) glasses. The materials were characterized by optical absorption and emission spectra. By using Judd–Ofelt theory, the intensity parameters Ωλ (λ = 2, 4, 6) and also oscillatory strengths were calculated from the absorption spectra. The results were used to compute the radiative properties of Er3+:CdBiB glasses. The concentration quenching and energy transfer from Yb3+–Er3+ were explained. The stimulated emission cross‐section, full width at half maximum (FWHM) and FWHM × values are also calculated for all the Er3+:CdBiB glasses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.

The luminescence properties of pure and ZrO2: Eu+3 nanophosphors with different concentration of the Eu+3 is synthesised and studied. A novel and environment benign microwave-induced hydrothermal process is used to synthesise the nanoparticles. As-formed pure ZrO2 nanoparticles were X-ray amorphous, and upon calcination at higher temperatures, they crystallise to a combination of both cubic and tetragonal phases. However, the ZrO2: Eu+3 nanophosphors prepared through the same technique under similar conditions yield exclusively cubic ZrO2, and it entirely depends on the concentration of Eu+3 as revealed by XRD studies. The nanoparticles are found to be spherical, non-porous and agglomerated as observed by SEM. The surface area of the nanoparticles of pure ZrO2 is found to be 30 m2/g for as-formed samples and 130 m2/g for calcined samples by BET studies. The increase in the surface area for calcined sample is due to the escaping of the adsorbed hydroxyl groups from the surface of the nanoparticles. The photoluminescence properties of the pure and Eu+3-doped ZrO2 nanoparticles were measured under 251 nm excitation wavelength. Under this excitation, pure ZrO2 gives the emissions at 394 nm, whereas Eu+3-doped nanoparticles gives the emissions at 613 nm, which corresponds to inter-f-f transition from 5D07F2 (613 nm) and is arising due to electronic dipole in the Eu+3 activator ion. CIE colour space (x, y) coordinates corresponding to 613 nm in the CIE chromaticity diagram is 0.680, 0.319.

Graphical Abstract

  相似文献   

8.
A series of controllable emissions SrWO4:Eu3+ and charge‐compensated SrWO4: (m = 0.01 or 0.20) phosphors was successfully prepared via a simple co‐precipitation method. The energy transfer mechanism was studied based on the Huang's theory. A low magnitude of Huang‐Rhys factor (10?2) was calculated using phonon sideband spectra. The Judd–Ofelt parameters Ωλ (λ = 2, 4 and 6) of Eu3+‐activated SrWO4 doped with charge compensation were obtained. The calculated Commission Internationale de l'Eclairage chromaticity coordinates were found to be about (0.67, 0.33) for SrWO4: and charge‐compensated SrWO4: phosphors, which coincided with the National Television Standard Committee system standard values for red. A white light emission was obtained under 362 nm excitation. The correlated color temperature was computed by a simple equation to characterize light sources. Thus, warm white light‐emitting diodes with higher Ra can be constructed by combining as‐prepared high efficiency, low correlated color temperature and high color purity phosphor.  相似文献   

9.
The solution combustion technique was used to synthesize MLaAl3O7 (M = Ba, Ca, Mg, and Sr) nanophosphors‐doped with Eu3+ using metal nitrates as precursors. The photoluminescence (PL) emission spectra exhibited three peaks at 587–591, 610–616, and 653–654 corresponding to 5D07F1, 5D07F2, and 5D07F3 transitions, respectively. Upon excitation at 254 nm, these nanophosphors displayed strong red emission with the dominant peak attributed to the 5D07F2 transition of Eu3+. The materials were further heated at 900 and 1050°C for 2 h to examine the consequence of temperature on crystal lattice and PL emission intensity. X‐ray diffraction (XRD) analysis proved that all the synthesized materials were of a crystalline nature. CaLaAl3O7 material has a tetragonal crystal structure with space group P421m. Scherer's equation was used to calculate the crystallite size of synthesized phosphors using XRD data. A Fourier transformation infrared study was used to observe the stretching vibrations of metal–oxygen bonds. Infrared peaks for stretching vibrations corresponding to lanthanum–oxygen and aluminium–oxygen bonds were found at 582 and 777 cm–1 respectively for CaLaAl3O7 phosphor material. Transmission electron microscopy images were used to determine the size of particles (18–37 nm for the as‐prepared materials) and also to analyze the three‐dimensional view of these materials. The experimental data indicate that these materials may be promising red‐emitting nanophosphors for use in white light‐emitting diodes.  相似文献   

10.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   

11.
The present communication is strongly focused on the investigation of synthesis, structural and luminescence properties of cerium (Ce3+)- and europium (Eu3+)-activated Zn4Al22O37 phosphors. Ce3+- and Eu3+-doped Zn4Al22O37 novel phosphors were prepared using a solution combustion synthesis route. Structural properties were studied using powder X-ray diffraction and high-resolution transverse electron microscopy. The optical properties were studied using ultraviolet–visible light spectroscopy and Fourier transform infrared spectroscopy; luminescence properties were studied using a photoluminescence (PL) technique. The crystal structure of the prepared Zn4Al22O37 host and Ce3+- and Eu3+-activated Zn4Al22O37 phosphors was investigated and was found to have a hexagonal structure. The measured PL emission spectrum of the Ce3+-doped Zn4Al22O37 phosphor showed an intense and broad emission band centred at 421 nm under a 298 nm excitation wavelength. By contrast, the Eu3+-doped Zn4Al22O37 phosphor exhibited two strong and intense emission bands at approximately 594 nm (orange) and 614 nm (red), which were monitored under 395 nm excitation. The Commission Internationale de l’Eclairage (CIE) colour coordinates of the Ce3+-doped Zn4Al22O37 were investigated and found to be x = 0.1567, y = 0.0637 (blue) at 421 nm and for Eu3+-doped Zn4Al22O37 were x = 0.6018, y = 0.3976 (orange) at 594 nm and x = 0.6779, y = 0.3219 (red) at 614 nm emission. The luminescence behaviour of the synthesized phosphors suggested that these phosphors may be used in lighting applications.  相似文献   

12.
Photoinduced electron transfer (PET) is the most common mechanism proposed to account for quenching of fluorophores. Herein, the intrinsic fluorescence of dapoxetine (DPX) hydrochloride is in the “OFF” state, owing to the deactivation effect of PET. When the amine moiety is protonated, the fluorescence is restored. Protonation of the nitrogen atom of the tertiary amine moiety in DPX leads to “ON” state of fluorescence due to hindrance of the deactivating effect of PET by protonation of the amine moiety. This permits specific and sensitive determination of DPX in human plasma [lower limit of quantification (LLOQ) = 30.0  ng mL 1 ]. The suggested method adopts protonation of DPX using 0.25 M hydrochloric acid in anionic micelles [6.94 mM sodium dodecyl sulfate (SDS)] leads to a marked enhancement of DPX-fluorescence, after excitation at 290 nm.  相似文献   

13.
A new A–π–D–π–A phenothiazine derivative, 2,2′‐((10‐octyl‐10H‐phenothiazine‐3,7‐diyl)bis (ethene‐2,1‐diyl))bis(1‐ethyl‐3,3‐dimethyl‐3H‐indol‐1‐ium)iodide (PTZ‐BEI) was prepared and fully characterized using infra‐red (IR), 1H nuclear magnetic resonance (NMR), 13C NMR, ultraviolet–visible light and mass spectra. Electronic spectra of PTZ‐BEI solutions in solvents with different polarities displayed absorption bands (λmax) related to intramolecular charge transfer. In addition, the emission spectra of PTZ‐BEI solutions were strongly solvent dependent for both wavelength and intensity. Stokes’ shift ( increased with increasing solvent polarity up to 4105 cm?1 in the most polar solvent, dimethylformamide. The linear solvation‐energy relationship was utilized to investigate solvent dependency of the Stokes’ shifts. Relative quantum yield (φ ) of PTZ‐BEI was calculated. Finally, density functional theory was employed at the B3LYP level for geometrical optimization and simulation of electron spectra for the PTZ derivative in gaseous and solvated states to explore the solvent effect.  相似文献   

14.
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3/NH4+) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3/NH4+ higher than one. Soil NH4+ dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3/NH4+, and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.  相似文献   

15.
The present paper reports the thermoluminescence (TL) of (ZnS)1‐x(MnTe)x nanophosphors that were prepared by a wet chemical synthesis method. The structure investigated by X‐ray diffraction patterns confirms the formation of a sphalerite phase whose space group was found to be F 3m. From XRD, TEM and SEM analyses the average sizes of the particles were found to be 12 nm, 11 nm and 15 nm, respectively. Initially the TL intensity increased with increasing values of x because the number of luminescence centres increased; however, for higher values of x the TL intensity decreased because of the concentration quenching. Thus the TL, mechanoluminescence and photoluminescence intensities are optimum for a particular value of x, that is for x = 0.05. Thermoluminescence of the (ZnS)1‐x (MnTe)x nanophosphor has not been reported previously. There were two peaks seen in the thermoluminescence glow curves in which the first peak lay at 105–100 °C and the second peak lay at 183.5–178.5 °C. The activation energies for the first and second peaks were found to be 0.45 eV and 0.75 eV, respectively.  相似文献   

16.
Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism – sulfur comproportionation (3H2S + + 2H+ ⇌ 4S0 + 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S + ⇌ + H2O) and to sulfite (H2S + 3 ⇌ 4 + 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.  相似文献   

17.
A rapid, simple, selective and precise fluorimetric method was developed and validated for determination of a selective xanthine oxidase inhibitor; febuxostat (FBX) in pharmaceutical formulations and in human plasma. The proposed method is based on quenching effect of FBX on the fluorescence intensity of terbium (Tb3+) through fluorescence resonance energy transfer (FRET) from Tb3+ to FBX. The formed complex was measured at λex. 320 nm/λem. 490 nm against a reagent blank. Fluorescence intensity of Tb3+ was diminished when FBX was added. A linear relationship between the fluorescence quenching value of the formed complex and the concentration of FBX was investigated. The reaction conditions and the fluorescence spectral properties of the complex have been studied. The linearity range of the developed method was 1.0–16.0 μg/ml. The suggested method was applied successfully for the estimation of FBX in bulk powder, dosage forms and spiked plasma samples with excellent recoveries (96.79–98.89%). In addition, the developed method has been successfully applied for determination of FBX in real plasma samples collected from healthy volunteers with good recoveries (82.06–85.65%). All obtained results of the developed method were statistically analyzed and validated according to ICH (International Conference on Harmonization) guidelines.  相似文献   

18.
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax) across humid or cold sites worldwide (37oS–79oN) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax) similarly increases by 0.23 g C m−2 day−1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.  相似文献   

19.
Fluorescence (FL) quenching of 3-aminoquinoline (3AQ) by halide ions Cl Br and I has been explored in an aqueous acidic medium using the steady-state and time-domain FL measurement techniques. The halide ions showed no significant change in the absorption spectra of 3AQ in an aqueous acidic medium. The FL intensity was strongly quenched by I ions and the order of FL quenching by halide ions was I > Br > Cl . The decrease in FL lifetime along with the reduction in FL intensity of 3AQ suggested the dynamic nature of quenching. The obtained K SV values were 328 M 1 for I ions and 119 M 1 for Br ions and the k q values were ~ 1.66 × 10 10 M 1 s 1 and 6.02 × 10 9 M 1 s 1 , respectively. The observations suggested that the likely governing mechanism for FL quenching may be an electron transfer process and the involvement of the heavy atom effects.  相似文献   

20.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号