首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies suggest a link between adenosine triphosphate (ATP) concentration and the amplitude of cell membrane flickering (CMF) in the human erythrocyte (red blood cell; RBC). Potentially, the origin of this phenomenon and the unique discocyte shape could be active processes that account for some of the ATP turnover in the RBC. Active flickering could depend on several factors, including pH, osmolality, enzymatic rates and metabolic fluxes. In the present work, we applied the data analysis described in the previous article to study time courses of flickering RBCs acquired using differential interference contrast light microscopy in the presence of selected effectors. We also recorded images of air bubbles in aqueous detergent solutions and oil droplets in water, both of which showed rapid fluctuations in image intensity, the former showing the same type of spectral envelope (relative frequency composition) to RBCs. We conclude that CMF is not directly an active process, but that ATP affects the elastic properties of the membrane that flickers in response to molecular bombardment in a manner that is described mathematically by a constrained random walk.  相似文献   

2.
Cell membrane fluctuations (CMF) of human erythrocytes, measured by point dark field microscopy, were shown to depend, to a large extent, on intracellular MgATP (Levin, S.V., and R. Korenstein. 1991. Biophys. J. 60:733–737). The present study extends that investigation and associates CMF with F-actin's ATPase activity. MgATP was found to reconstitute CMF in red blood cell (RBC) ghosts and RBC skeletons to their levels in intact RBCs, with an apparent Kd of 0.29 mM. However, neither non-hydrolyzable ATP analogues (AMP-PNP, ATPγS) nor hydrolyzable ones (ITP, GTP), were able to elevate CMF levels. The inhibition of ATPase activity associated with the RBC's skeleton, carried out either by the omission of the MgATP substrate or by the use of several inhibitors (vanadate, phalloidin, and DNase I), resulted in a strong decrease of CMF. We suggest that the actin's ATPase, located at the pointed end of the short actin filament, is responsible for the MgATP stimulation of CMF in RBCs.  相似文献   

3.
Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.  相似文献   

4.
Elevated blood ATP and increased red blood cell (RBC) ATP transport is associated with cystic fibrosis (CF). In this report, we demonstrate the presence of the wild-type and the DeltaF508 mutant form of the CF transmembrane conductance regulator protein in RBC membranes and its putative interaction with ecto-apyrase, an ATP hydrolyzing enzyme also present in the RBC membrane. RBC membranes of control and DeltaF508 individuals and of wild-type and CF transmembrane conductance regulator-knockout mice were examined by immunoblot using several antibodies directed against different epitopes of this protein. These experiments indicated that human RBC membranes contain comparable amounts of the wild-type CF transmembrane conductance regulator protein and the DeltaF508 mutant form of the protein, respectively. CF transmembrane conductance regulator protein was also detected in wild-type mouse RBC membranes but not in the gene knockout mouse RBC membranes. Antibodies directed against ecto-apyrase co-immunoprecipitated CF transmembrane conductance regulator protein of human RBC membranes indicating a physical interaction between these two membrane proteins consistent with ATP transport and extracellular hydrolysis. We conclude that RBCs are a significant repository of CF transmembrane conductance regulator protein and should provide a novel system for evaluating its expression and function.  相似文献   

5.

Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.

  相似文献   

6.
The ability to deform is an important feature of red blood cells (RBCs) for performing their function of oxygen delivery. Little is known about the hormonal regulation of RBC deformability. Here we report that human atrial natriuretic peptide (ANP) acts directly on human RBCs leading to the elevation of local bending fluctuations of the cell membrane. These changes are accompanied by an increase in the filterability of RBCs. These ANP effects were mimicked by cyclic GMP analogues, suggesting modulation of local membrane bending fluctuations and RBC filterability via a cyclic GMP-dependent pathway. The effect of ANP on the mechanical properties of RBCs suggests that ANP may increase the passage red blood cells through capillaries resulting in an improved oxygen delivery to the tissues.  相似文献   

7.
Reductions in red blood cell membrane deformability (RBC(D)) may perturb microcirculatory blood flow and impair tissue O(2)-availability. We investigated the effect of assay temperature on the distribution of RBC(D) in endotoxin (LPS) incubated and control RBCs. Fresh blood from healthy rats was incubated with and without the presence of LPS for 6 hrs. An index of red blood cell membrane deformability, delta, was measured via the micropipette aspiration technique at 25 degrees C and 37 degrees C at 0, 2 and 6 hrs of incubation. The ATP content of RBC was measured by the luciferin-luciferase technique. At 25 degrees C, LPS caused a significant decrease in mean delta after 2 and 6 hours incubation compared to controls (-10.0%, p=0.03 and -24.0%, p=0.03, respectively) characterized by a left shift in the distribution (skewness: -1.4). However, at 37 degrees C a significant decrease in delta was only detected after 6 hrs of LPS incubation (-13.8%, p=0.01, compared to -5.1%, p=0.7 at 2 hours) and lacked the left shifted distribution (skewness: 0.2). No significant difference in ATP content of RBCs was observed between groups. We have shown that LPS incubation results in a significant decrease in RBC(D) and that room temperature measurement of physical membrane properties may exaggerate the differences between normal and perturbed RBCs.  相似文献   

8.
Loading red blood cells with trehalose: a step towards biostabilization   总被引:22,自引:0,他引:22  
A method for freeze-drying red blood cells (RBCs) while maintaining a high degree of viability has important implications in blood transfusion and clinical medicine. The disaccharide trehalose, found in animals capable of surviving dehydration can aid in this process. As a first step toward RBC preservation, we present a method for loading RBCs with trehalose. The method is based on the thermal properties of the RBC plasma membranes and provides efficient uptake of the sugar at 37 degrees C in a time span of 7 h. The data show that RBCs can be loaded with trehalose from the extracellular medium through a combination of osmotic imbalance and the phospholipid phase transition, resulting in intracellular trehalose concentrations of about 40 mM. During the loading period, the levels of ATP and 2,3-DPG are maintained close to the levels of fresh RBCs. Increasing the membrane fluidity through the use of a benzyl alcohol results in a higher concentration of intracellular trehalose, suggesting the importance of the membrane physical state for the uptake of the sugar. Osmotic fragility data show that trehalose exerts osmotic protection on RBCs. Flow cytometry data demonstrate that incubation of RBCs in a hypertonic trehalose solution results in a fraction of cells with different complexity and that it can be removed by washing and resuspending the RBCs in an iso-osmotic medium. The data provide an important first step in long-term preservation of RBCs.  相似文献   

9.
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.  相似文献   

10.
Using electron spin resonance (ESR) spin labeling technique,we have studied the conformation of sulfhydryl groups(-SH) binding sites in membrane proteins and mem brane fluidity of red blood cells(RBCs) from two groups of patients with anemia of chronic renal failure(ACRF).One of the groups is composed of patients who were untreated with recombinant human erythropoietin(r-HuEPO),and the other is composed of patients who were treated with r-HuEPO.The results indicated:1)the conformation of SH group binding site in RBC membrane proteins from former group was different from those of healty people.2)the fluidity in the region near the surface of RBC membrane from former group was lower than those of healthy people.3)However,the above biophysical properties of RBC membrane from later group were normal.We concluded that RBC membrane in patients with ACRF was abnormal,and the treatment of r-HuEPO may promote the production of normal RBCs,thus ameliorate the biophysical properties of RBCs from the patients with ACRF.  相似文献   

11.
Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.  相似文献   

12.
Ryanodine receptors (RyRs) are a family of Ca2+ channel proteins that mediate the massive release of Ca2+ from the endoplasmic reticulum into the cytoplasma. In the present study, we manipulated the incorporation of RyR1 into RBC membrane and investigated its influences on the intracellular Ca2+ ([Ca2+]in) level and the biomechanical properties in RBCs. The incorporation of RyR1 into RBC membranes was demonstrated by both immunofluorescent staining and the change of [Ca2+]in of RBCs. In the presence of RyR1, [Ca2+]in showed biphasic changes, i.e., it increased with the extracellular Ca2+ ([Ca2+]ex) up to 5 μM and then decreased with the further increase of [Ca2+]ex. However, [Ca2+]in remained constant in the absence of the RyR1. The results of biomechanical measurements on RBCs, including deformability, osmotic fragility, and membrane microviscosity, reflected similar biphasic changes of [Ca2+]in mediated by RyR1 with the increases of [Ca2+]ex. Therefore, it is believed that RyR1 can incorporate into RBC membrane in vitro, and mediate Ca2+ influx, and then regulate RBC biomechanical properties. This information suggests that RBCs may serve as a model to study the function of RyR1 as a Ca2+ release channel.  相似文献   

13.
We review recent theoretical work that analyzes experimental measurements of the shape and fluctuations of red blood cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the situation of elastic cells with that of fluid-filled vesicles. In red blood cells (RBCs), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wave vector and frequency dependence of the fluctuation spectrum of RBCs indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect the transient defects induced in the cytoskeleton network by ATP.  相似文献   

14.
During storage, red blood cells (RBCs) for transfusion purposes suffer progressive deterioration. Sialylated glycoproteins of the RBC membrane are responsible for a negatively charged surface which creates a repulsive electrical zeta potential. These charges help prevent the interaction between RBCs and other cells, and especially among each RBCs. Reports in the literature have stated that RBCs sialylated glycoproteins can be sensitive to enzymes released by leukocyte degranulation. Thus, the aim of this study was, by using an optical tweezers as a biomedical tool, to measure the zeta potential in standard RBCs units and in leukocyte reduced RBC units (collected in CPD-SAGM) during storage. Optical tweezers is a sensitive tool that uses light for measuring cell biophysical properties which are important for clinical and research purposes. This is the first study to analyze RBCs membrane charges during storage. In addition, we herein also measured the elasticity of RBCs also collected in CPD-SAGM. In conclusion, the zeta potential decreased 42% and cells were 134% less deformable at the end of storage. The zeta potential from leukodepleted units had a similar profile when compared to units stored without leukoreduction, indicating that leukocyte lyses were not responsible for the zeta potential decay. Flow cytometry measurements of reactive oxygen species suggested that this decay is due to membrane oxidative damages. These results show that measurements of zeta potentials provide new insights about RBCs storage lesion for transfusion purposes.  相似文献   

15.
Gov NS  Safran SA 《Biophysical journal》2005,88(3):1859-1874
We show theoretically how adenosine 5'-triphosphate (ATP)-induced dynamic dissociations of spectrin filaments (from each other and from the membrane) in the cytoskeleton network of red blood cells (RBC) can explain in a unified manner both the measured fluctuation amplitude as well as the observed shape transformations as a function of intracellular ATP concentration. Static defects can be induced by external stresses such as those present when RBCs pass through small capillaries. We suggest that the partially freed actin at these defect sites may explain the activation of the CFTR membrane-bound protein and the subsequent release of ATP by RBCs subjected to deformations. Our theoretical predictions can be tested by experiments that measure the correlation between variations in the binding of actin to spectrin, the activity of CFTR, and the amount of ATP released.  相似文献   

16.
Previous work in several laboratories revealed little or no Ca2+ pump ATPase activity and little or no activation of the ATPase by calmodulin (CaM) in membranes isolated from dog red blood cells (RBCs). In the present work, intact RBCs from dogs were exposed to the ionophore, A23187, in the presence of Ca2+. A rapid, apparently first order, loss of ATP occurred under these conditions. The first order rate constant was 0.0944 min-1, or approximately 47% of that found in human RBCs under the same conditions. The anti-CaM drug, trifluoperazine, inhibited the loss of ATP and the Ca2+ activation curve of ATP loss in intact cells resembled that observed for CaM-activated Ca2+ pump ATPase in isolated human membranes. Taken together, these data are consistent with the interpretation that the dog RBC membrane contains a CaM-activated Ca2+ pump ATPase.  相似文献   

17.
Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation.  相似文献   

18.
《Biophysical journal》2021,120(21):4819-4831
ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.  相似文献   

19.
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.  相似文献   

20.
A comparative study of the effect of hydrogen peroxide on adult and neonatal red blood cell (RBC) membrane protein composition has been carried out. The results indicate that (a) the native neonatal RBC membranes contain higher levels of membrane-bound hemoglobin (MBHb) than the adult RBC membranes. (b) The content of MBHb increases when RBCs are incubated with increasing concentrations of hydrogen peroxide (H2O2), more so in neonatal than in adult RBCs; however, neonatal RBC membrane proteins are less susceptible to H2O2 oxidation than adult ones. This could be attributed to the fact that Hb F, which is more susceptible to oxidation than Hb A, adds to the reduction potential of neonatal RBC (in which it is present in large amounts) and partially protects neonatal membrane proteins against oxidant stress compared to Hb A in adult RBC. (c) In both neonatal and adult RBCs, Spectrin 1 is relatively more susceptible to oxidant stress than spectrin 2, and spectrins in adult RBC are more labile for peroxidation than the spectrins in neonatal RBC. (d) Based on electrophoretic studies with and without reduction of membranes with mercaptoethanol, we have classified two types of MBHb: Type I is adsorbed to membrane by noncovalent interactions and Type II MBHb is chemically crosslinked to membrane components by disulfide bridges; the content of both these types increases when RBCs are incubated with increasing concentrations of H2O2. (e) Band 6 protein is present in higher amounts in neonatal than in adult RBC membranes. (f) Since the total content of MBHb increases linearly with the level of oxidant stress, we suggest that it could be used as a marker for oxygen radical-induced injury to tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号