首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Spasticity is a disorder of hypertonus associated with neurological diseases, characterized by a decrease in stretch reflex threshold. Stretch reflex threshold of wrist flexors has been recorded in subjects affected by forearm spasticity due to acute neurological lesions, occurred from one to sixty-one months before. In all the subjects a decreased stretch reflex threshold was recorded and a negative correlation between stretch reflex threshold and time of the disease resulted. In five subjects affected by mild spasticity the velocity stretch reflex threshold was tested one-three months after stroke and then six months later. In three cases a further decrease in stretch reflex threshold was recorded. Sixteen subjects affected by heavy forearm spasticity (quantified by Ashworth scale), were treated with Botulinum toxin injections to reduce spasticity. Fourteen of 16 subjects were responsive to the antispastic therapy: a decrease of at least 1 point in the Ashworth scale was detected after the treatment. In all the responsive cases an increase of stretch reflex threshold was recorded. The results confirm that the stretch reflex threshold is decreased in spastic muscles; it decreases progressively in time after the acute lesion. In addition, these results demonstrate that the decreased stretch reflex threshold can be reversed with Botulinum toxin injections. It is known that Botulinum toxin reduce the presynaptic release of Acetylcholine of neuromuscular synapses, but there are experimental evidences that it acts even on spindle's fibres, decreasing the sensitivity of intrafusal muscle fibres. This effect explains how Botulinum toxin increases the stretch reflex threshold in spastic muscles.  相似文献   

2.
New methods have been recently developed to explore selectively presynaptic inhibition of Ia afferents in humans. They have allowed us to describe a highly specialized organisation in these pathways. A differential control has been disclosed during voluntary movements among various motoneuronal pools: at the onset of a selective voluntary contraction presynaptic inhibition of Ia afferents projecting to the 'contracting' motoneurons is strongly decreased whereas presynaptic inhibition of Ia afferents to antagonistic or synergistic motoneuronal pools, not involved in the contraction, is increased. Indirect arguments suggested that these modulations are centrally patterned. A differential control has been also disclosed between upper and lower limb pathways. Using transcranial magnetic stimulation to induce a descending corticospinal volley, we have shown that a corticospinal volley inhibits preferentially 'presynaptic interneurons'at the lumbar spinal level, an effect which is strengthened by a cutaneous input whereas it preferentially activates 'presynaptic interneurons' at the cervical spinal level, an effect which is inverted by a cutaneous input.  相似文献   

3.
Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity.  相似文献   

4.
The effect of continuous Achilles tendon vibration on the soleus H-reflex amplitude was quantified over the entire H-reflex recruitment trajectory in 30 controls and 33 patients with spasticity in the lower limbs. The results show that with increasing stimulus intensities, vibratory inhibition of the Hreflex initially increases, then subsequently decreases. This is probably a direct consequence of how the activation thresholds of the motoneurons are distributed over the motoneuron pool. In patients, vibratory inhibition of the H-reflex was less over the entire recruitment trajectory than in controls. The decrease in vibratory inhibition in spasticity is commonly attributed to a decrease in presynaptic inhibition or post-activation depression. However, the average Hreflex threshold was lower in the patients, suggesting a decrease of the motoneuron activation thresholds. A lower reflex threshold in spasticity, therefore, may contribute to the observed reduction of vibratory inhibition.  相似文献   

5.
This paper presents theoretical considerations on the possibility of topographically ordered signal transmission in the control system of the muscle stretch reflex. It is investigated how correlations between Ia fibres from primary muscle spindle endings in conjunction with an appropriate connectivity of Ia fibres and motoneurones enable the stretch reflex system to trace local routes through the spinal cord. The complex data processing capabilities of the motoneuronal soma-dendritic membrane system are fully taken into account, and it is argued that correlations between inputs to this system may play an important role for signal transmission through the spinal cord.  相似文献   

6.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

7.
Experiments were performed in precollicular decerebrate cats to investigate whether proprioceptive volleys originating from Golgi tendon organs and muscle spindles may activate supraspinal descending inhibitory mechanisms. Conditioning stimulation of the distal stump of ventral root filaments of L7 or S1 leading to isometric contraction of the gastrocnemius-soleus (GS) muscle inhibited the monosynaptic reflex elicited by stimulation of the ipsilateral plantaris-flexor digitorum and hallucis longus (Pl-FDHL) nerve. The amount and the time course of this Golgi inhibition were greatly increased by direct cross-excitation of the intramuscular branches of the group Ia afferents due to ephaptic stimulation of the sensory fibers, which occurred when a large number of a fibers had been synchronously activated. The postsynaptic and the presynaptic nature of these inhibitory effects, as well as their segmental origin, have been discussed. In no instance, however, did the stimulation of Golgi tendon organs elicit any late inhibition of the test monosynaptic reflex, which could be attributed to a spino-bulbo-spinal (SBS) reflex. Conditioning stimulation of both primary and secondary endings of muscle spindles, induced by dynamic stretch of the lateral gastrocnemius-soleus (LGS) muscle, was unable to elicit any late inhibition of the medial gastrocnemius (MG) monosynaptic reflex. The only changes observed in this experimental condition were a facilitation of the test reflex during the dynamic stretch of the LGS, followed at the end of the stimulus by a prolonged depression. These effects however were due to segmental interactions, since they persisted after postbrachial section of the spinal cord. Intravenous injection of an anticholinesterase, at a dose which greatly potentiated the SBS reflex inhibition produced by conditioning stimulation of the dorsal root L6, did not alter the changes in time course of the test reflex induced either by muscle contraction or by dynamic muscle stretch. Conditioning stimulation of a muscle nerve activated the supraspinal descending mechanism responsible for the inhibitory phase of the SBS reflex only when the high threshold group III muscle afferents (innervating pressure-pain receptors) had been recruited by the electric stimulus. This finding contrasts with the great availability of the system to the low threshold cutaneous afferents. The proprioceptive afferent volleys originating from Golgi tendon organs as well as from both primary and secondary endings of muscle spindles, contrary to the cutaneous and the high threshold muscle afferent volleys, were apparently unable to elicit not only a SBS reflex inhibition, but also any delayed facilitation of monosynaptic extensor reflexes attributable to inhibition of the cerebellar Purkinje cells.  相似文献   

8.
BackgroundSpasticity and spastic dystonia are two separate phenomena of the upper motor neuron syndrome. Spasticity is clinically defined by velocity-dependent hypertonia and tendon jerk hyperreflexia due to the hyper-excitability of the stretch reflex. Spastic dystonia is the inability to relax a muscle leading to a spontaneous tonic contraction. Both spasticity and spastic dystonia are present in patients who are at rest; however, only patients with spasticity are actually able to kept their muscles relaxed prior to muscle stretch. The idea that has inspired the present work is that also in patients with spastic dystonia the stretch reflex is likely to be hyper-excitable. Therefore, velocity-dependent hypertonia could be mediated not only by spasticity, but also by spastic dystonia.MethodsTonic stretch reflexes in the rectus femoris muscle were evoked in 30 patients with multiple sclerosis showing velocity-dependent hypertonia of leg extensors and the habituation of the reflex was studied. Moreover, the capability of relax the muscle prior to muscle stretch (spastic dystonia) was also investigated.ResultsA tonic stretch reflex was evoked in all the enrolled patients. 73% of the patients were able to relax their rectus femoris muscle prior to stretch (spasticity). In the overwhelming majority of these patients, the tonic stretch reflex decreased during repeated stretches. In the remaining 27% of the subjects, the muscle was tonically activated prior to muscle stretch (spastic dystonia). In the patients in whom spastic dystonia progressively increased over the subsequent stretches (50% of the subjects with spastic dystonia), the habituation of the reflex was replaced by a progressive reflex facilitation.DiscussionThis study shows for the first time that velocity-dependent hypertonia can be caused by two distinct phenomena: spasticity and spastic dystonia. The habituation of the tonic stretch reflex, which is a typical feature of spasticity, is replaced by a reflex facilitation in the half of the subject with spastic dystonia. These preliminary findings suggest that differentiating the two types of velocity-dependent muscle hypertonia (spasticity and spastic dystonia) could be clinically relevant.  相似文献   

9.
Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200?Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50?Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.  相似文献   

10.
During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments.  相似文献   

11.
In this study, a neuromusculoskeletal model was built to give insight into the mechanisms behind the modulation of reflexive feedback strength as experimentally identified in the human shoulder joint. The model is an integration of a biologically realistic neural network consisting of motoneurons and interneurons, modeling 12 populations of spinal neurons, and a one degree-of-freedom musculoskeletal model, including proprioceptors. The model could mimic the findings of human postural experiments, using presynaptic inhibition of the Ia afferents to modulate the feedback gains. In a pathological case, disabling one specific neural connection between the inhibitory interneurons and the motoneurons could mimic the experimental findings in complex regional pain syndrome patients. It is concluded that the model is a valuable tool to gain insight into the spinal contributions to human motor control. Applications lay in the fields of human motor control and neurological disorders, where hypotheses on motor dysfunction can be tested, like spasticity, clonus, and tremor. Action Editor: Karen Sigvardt  相似文献   

12.
A computer model is presented that describes soleus H-reflex recruitment as a function of electric stimulus intensity. The model consists of two coupled non-linear transfer functions. The first transfer function describes the activation of muscle spindle (Ia) afferent terminals as a function of the electric stimulus intensity; whereas the second describes the activation of a number of motoneurons as a function of the number of active Ia afferent terminals. The effect of change in these transfer functions on the H-reflex recruitment curve is simulated. In spastic patients, a higher average maximal H-response amplitude is observed in combination with a decreased H-reflex threshold. Vibration of the Achilles tendon reduces the H-reflex amplitude, presumably by reducing the excitatory afferent input. Vibratory inhibition is diminished in spasticity. In the model, the afferent-motoneuron transfer function was modified to represent the possible alterations occurring in spasticity. The simulations show that vibratory suppression of the H-reflex is determined only in part by the inhibition level of the afferent input. With a constant level of presynaptic inhibition, the suppression of reflexes of different sizes may vary. A lowering of the motoneuron activation thresholds in spastic patients will directly contribute to a decrease of vibratory inhibition in spasticity.  相似文献   

13.
Some characteristics of spinal reflex reaction inhibition were studied in cat fetuses during the last three weeks of antenatal development. The experiments were conducted on fetuses with intact placental circulation. Restoration of the excitability of the spinal reflex arcs was very slow after stimulation of the dorsal root by a single stimulus. In embryos studied 20 days before birth the full inhibition of reflex responses lasted about 500 msec. Even 2–3 sec after a single stimulation of the afferent fibers the amplitude of the reflex response to the second stimulus was only 30–40% of the control value. It was determined that such long postactivation depression is unrelated to refractoriness or antidromic inhibition. The presence of a prolonged intense depolarization of afferent terminal fibers at these stages suggests a presynaptic inhibition as one of the most probable reasons for the prolonged postactivation depression. Another important factor in the appearance of postactivation depression is probably the morphologic and functional immaturity of synaptic structures. A reciprocal inhibition was observed in cat fetuses on the 10–12th antenatal day. On the basis of these data it is suggested that in embryogenesis presynaptic inhibition considerably precedes that of postsynaptic fibers.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 68–75, January–February, 1971.  相似文献   

14.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

15.
The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity.  相似文献   

16.
1. The effect of tetanic stimulation of ipsilateral group I afferents from the GS muscle on a synchronous stretch of the flexor EDL/TA muscles has been investigated in precollicular decerebrate cats. 2. The stretch-induced tension of the EDL/TA muscles increases remarkably during simultaneous stimulation of the GS nerve with maximal intensities corresponding to 1.5 times the threshold for the group 1 afferents. This increas appears above all in the dynamic part of stretch. 3. Under our experimental conditions there is no activation fo flexor-alpha-motoneurones during tetanic stimulation of the GS afferents without muscle stretch, as measured by the resting tension of the EDL/TA muscles. 4. Desptie an increase in the stretch-induced tension during fusimotor stimulation of antagonistic group I afferents, a transmission loss in the excitation via the psi-loop to the flexor-alpha-motoneurones occurs. This could be demonstrated by the ratio: increase in the tension T /increase in the number of Ia spikes. This is explained by snychronous convergence of the discharges of Ia inhibitory interneurones to the flexor-alpha-motoneurones. 5. The system studied demonstrates an input-output relation of the stretch reflex during conditions in which both reciprocal inhibition and autogenetic excitation via the psi-loop occur. It appears however, that the reciprocal inhibition is partly overwhelmed by the autogenetic excitation which results from the increase in the Ia discharge rate during fusimotor reflex. 6. It is postulated that static rather than dynamic psi-moto-neurones are involved in the investigated reflex arc.  相似文献   

17.
Using the method of assessing the presynaptic inhibition of heteronymous Ia afferents and α motoneurons of the m. soleus during a homonymous vibration effect on the tendo calcaneus in ten subjects, changes in the inhibition of spinal α motoneurons during 15 min of the aftereffect of mechanical stimulation of different types were studied. Intense mechanical stimuli and weak tactile, vibratory stimuli applied in combination intensify inhibitory processes in the afferent fibers of group Ia, their effects differing in the value of the increase in the presynaptic inhibition of spinal α motoneurons.  相似文献   

18.
This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.  相似文献   

19.
Using the method of microelectrode (intracellular and extracellular) recording, the mechanism of inhibition following reflex discharge in interneurons of the lumbosacral section of the spinal cord of cats on activation of cutaneous and high-threshold muscle afferents was studied. It was shown that the postdischarge depression of the reflex responses 10–20 msec after the moment of activation of the neuron is due to afterprocesses in the same neuron and presynaptic pathways. The depression of spike potentials from the 20th to the 100th msec is produced by inhibitory postsynaptic potentials (IPSP). During the development of IPSP the inhibition of spike potentials can be due to both a decrease of the depolarization of the postsynaptic membrane below the critical threshold and a decrease of sensitivity of the cell membrane to the depolarizing action of the excitatory postsynaptic potential (EPSP). At intervals between the stimuli of 30–100 msec the duration of EPSP after the first stimulus does not differ from that after the second stimulus. Hence, it is suggested that the presynaptic mechanisms do not play an essential part in this type of inhibition of interneurons. The inhibition following the excitation favors the formation of a discrete message to the neurons of higher orders.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 3–9, January–February, 1970.  相似文献   

20.
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号