首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
IntroductionThe aim of this study was to assess the effects of neuromuscular fatigue on stretch reflex-related torque and electromyographic activity of spastic knee extensor muscles in hemiplegic patients. The second aim was to characterize the time course of quadriceps muscle fatigue during repetitive concentric contractions.MethodsEighteen patients performed passive, isometric and concentric isokinetic evaluations before and after a fatigue protocol using an isokinetic dynamometer. Voluntary strength and spasticity were evaluated following the simultaneous recording of torque and electromyographic activity of rectus femoris (RF), vastus lateralis (VL) and biceps femoris (BF).ResultsIsometric knee extension torque and the root mean square (RMS) value of VL decreased in the fatigued state. During the fatigue protocol, the normalized peak torque decreased whereas the RMS of RF and BF increased between the first five and last five contractions. There was a linear decrease in the neuromuscular efficiency-repetitions relationships for RF and VL. The peak resistive torque and the normalized RMS of RF and VL during passive stretching movements were not modified by the fatigue protocol for any stretch velocity.DiscussionThis study showed that localized quadriceps muscle fatigue caused a decrease in voluntary strength which did not modify spasticity intensity. Changes in the distribution of muscle fiber type, with a greater number of slow fibers on the paretic side, may explain why the stretch reflex was not affected by fatigue.  相似文献   

2.
Spasticity after a stroke is usually assessed in a score form by subjectively determining the resistance of a joint to an externally imposed passive movement. This work presents a spasticity measurement system for on-line quantifying the stretch reflex of paretic limbs. Four different constant stretch velocities in a ramp-and-hold mode are used to elicit the stretch reflex of the elbow joint in spastic subjects. The subjects are tested at supine position with the upper limb stretched towards the ground, in contrast with the horizontally stretched movement used in other studies. By subtracting the baseline torque, reflex torque measured at a selected low stretch velocity of 5 deg/sec, the influence of gravity torque and inertial in vertical stretching mode can be minimized. The averaged speed-dependent reflex torque (ASRT), defined as the measured torque deviated from the baseline torque, is used for quantifying the spastic hypertonia. Four subjects having incurred cerebrovascular accident (CVA) are recruited for time-course study in which the measurements are taken at 72 hours, one week, one month, three months, and six months after onset of stroke. During the development of spasticity, the changes of ASRT and velocity sensitivity of ASRT of the involved and the intact elbow joints are discussed.  相似文献   

3.
Spasticity is a disorder of hypertonus associated with neurological diseases, characterized by a decrease in stretch reflex threshold. Stretch reflex threshold of wrist flexors has been recorded in subjects affected by forearm spasticity due to acute neurological lesions, occurred from one to sixty-one months before. In all the subjects a decreased stretch reflex threshold was recorded and a negative correlation between stretch reflex threshold and time of the disease resulted. In five subjects affected by mild spasticity the velocity stretch reflex threshold was tested one-three months after stroke and then six months later. In three cases a further decrease in stretch reflex threshold was recorded. Sixteen subjects affected by heavy forearm spasticity (quantified by Ashworth scale), were treated with Botulinum toxin injections to reduce spasticity. Fourteen of 16 subjects were responsive to the antispastic therapy: a decrease of at least 1 point in the Ashworth scale was detected after the treatment. In all the responsive cases an increase of stretch reflex threshold was recorded. The results confirm that the stretch reflex threshold is decreased in spastic muscles; it decreases progressively in time after the acute lesion. In addition, these results demonstrate that the decreased stretch reflex threshold can be reversed with Botulinum toxin injections. It is known that Botulinum toxin reduce the presynaptic release of Acetylcholine of neuromuscular synapses, but there are experimental evidences that it acts even on spindle's fibres, decreasing the sensitivity of intrafusal muscle fibres. This effect explains how Botulinum toxin increases the stretch reflex threshold in spastic muscles.  相似文献   

4.
During the last 40 years, several studies in man have been devoted to the pathophysiological mechanisms underlying spasticity. Spasticity is characterised by a velocity dependent increase in muscle tone. Many spinal pathways control stretch reflex excitability and a malfunction in any one of them could theoretically produce the exaggeration of the stretch reflex. Delwaide showed that the vibration-induced inhibition of Ia fibres is reduced in spastic patients. However, the relation between a decrease in presynaptic Ia inhibition and the pathophysiology of spasticity has been recently questioned since it was argued that homosynaptic depression (or post-activation depression) also contributes to the vibratory-induced depression of monosynaptic reflexes. This paper is thus devoted to a review of the methods recently developed to study selectively presynaptic Ia inhibition in man and to a reevaluation of the relations between modifications in presynaptic Ia inhibition and spasticity in hemiplegic and spinal spastic patients.  相似文献   

5.
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.  相似文献   

6.
Spasticity is a known sequelae of spinal cord injury and head injury. We sought to examine whether there were any significant differences in the characteristics or underlying mechanisms of spasticity in these two groups in the chronic period which may be related to the level of injury of the neuraxis. The response to vibration applied to the muscle, or the tonic vibratory reflex, has been shown to be related to the degree of spasticity, and was therefore studied along with phasic reflexes and passive movements. These studies were carried out on cooperative, stabilized patients who were otherwise healthy, 5 with head injuries, and 5 with spinal cord injuries. The patients were examined in a supine position while surface EMG recordings were made of quadriceps and triceps surae muscles bilaterally. Tendon jerk responses, passive and volitional movements, and responses to a powerful vibratory stimulator were measured. In both head injury and spinal cord injury patient groups, a large EMG response was elicited by passive maneuvers, and tendon jerks were exaggerated. The tonic vibratory response, previously shown to be dependent upon brain influence, was present in both groups. These observations suggest that similar suprasegmental mechanisms may be responsible for hypertonia in both head-injured and spinal cord-injured patients.  相似文献   

7.
The mechanism of onset of rebound after inhibition induced by electrical stimulation of a nerve of maximal and submaximal strength for M-response was studied in single motor units of normal human soleus, rectus femoris, and hand muscles. Poststimulus histograms and changes in the duration of interspike intervals were compared with mechanical recordings of muscle contractions. In all muscles tested, during strong isotonic contraction, the increase in motor unit activity after a silent period was partly due to synchronization of their emergence from inhibition. However, it also contained a component of true facilitation of motoneurons, which was evidently a reflex response to lengthening of the muscle in the relaxation phase after evoked contraction. The latent period of this facilitation in the soleus and rectus femoris muscles coincided in value with the latent period of the monosynaptic spinal reflex, whereas in the hand muscles, in which a monosynaptic response to electrical nerve stimulation could not be evoked, the latent period of facilitation as a result of spindle activation during muscle relaxation was significantly longer than the latent period of the monosynaptic reflex. These findings support the hypothesis of presynaptic suppression of monosynaptic connections of Ia afferents with the motoneurons of some human muscles by descending tonic influences and of the use of information coming from spindles by supraspinal levels of the CNS.  相似文献   

8.
Until now, the equilibrium-point hypothesis (λ model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed. Received: 26 July 1993/Accepted in revised form: 22 December 1993  相似文献   

9.
As the H reflex remains unable to assess mechanical changes intrinsic to a muscle, the aim of this study was to modify the H reflex techniques and to characterize the neural and mechanical components of muscle spasticity, relating the two components to clinical observations. Thirty-four patients featuring either a spinal-cord lesion (n=15) or stroke (n=19) and 23 neurologically normal subjects were recruited. Soleus H reflex and maximal M response (M(max)) were measured with electromyography and mechanomyography (MMG). The motoneuronal excitability was represented with the adjusted ratio of the H reflex to the M(max) (H/M(max)) and the ratio of the paired H reflexes (H(2)/H(1)). Muscle mechanical properties were characterized by the amplitude and median frequency of maximal M response recorded with MMG (MMG(Mmax)). The results showed that spastic patients exhibited a larger H/M(max), H(2)/H(1) and amplitude of MMG(Mmax) than the control group. H/M(max) and amplitude of MMG(Mmax) accounted for 55.7% of the variance in the Modified Ashworth Scale, the clinical hypertonia assessment. The amplitude of MMG(Mmax) correlated with functional impairments, as assessed with the Barthel index and Fugl-Meyer motor-assessment scale. It was concluded that spastic hypertonia involved an atypical increase in motoneuronal excitability and muscle mechanical properties, while impairment of functional performance and daily activity was attributable primarily to altered mechanical properties of a spastic muscle.  相似文献   

10.
AimThis study aims to simultaneously record the magnetic and electric components of the propagating muscular action potential.MethodA single-subject study of the monosynaptic stretch reflex of the musculus rectus femoris was performed; the magnetic field generated by the muscular activity was recorded in all three spatial directions by five optically pumped magnetometers. In addition, the electric field was recorded by four invasive fine-wire needle electrodes. The magnetic and electric fields were compared by modelling the muscular anatomy of the rectus femoris muscle and by simulating the corresponding magnetic field vectors.ResultsThe magnetomyography (MMG) signal can reliably be recorded following the stimulation of the monosynaptic stretch reflex. The MMG signal shows several phases of activity inside the muscle, the first of which is the propagating muscular action potential. As predicted by the finite wire model, the magnetic field vectors of the propagating muscular action potential are generated by the current flowing along the muscle fiber. Based on the magnetic field vectors, it was possible to reconstruct the pinnation angle of the muscle fibers. The later magnetic field components are linked to the activation of the contractile apparatus.InterpretationMMG allows to analyze the muscle physiology from the propagating muscular action potential to the initiation of the contractile apparatus. At the same time, this methods reveals information about muscle fiber direction and extend. With the development of high-resolution magnetic cameras, that are based on OPM technology, it will be possible to image the function and structure of the biomagnetic field of any skeletal muscle with high precision. This method could be used both, in clinical medicine and also in sports science.  相似文献   

11.
The objective of this study is to develop a portable device for quantifying the velocity-dependent properties of spastic elbow muscles. Based on a motor-driven system, validation tests of the portable system such as accuracy and response of sensors were first examined. Furthermore, simulated modules (inertia, damper and spring) as well as elbow joints (15 control and 15 hemiplegic subjects) were manually stretched under four different frequencies (1/3, 1/2, 1 and 3/2 Hz) through 60 degrees range of motion. Joint resistance and displacement during sinusoidal stretch were collected for further analysis. Two quantitative parameters (i.e., viscous components under each frequency and averaged viscosity across four frequencies) were derived to estimate the velocity-dependent properties of elbow joint. Tests of simulated modules confirm the manual stretch protocol and data analysis are valid in estimating the velocity-dependent component during a sinusoidal stretch. Compared to normal control, viscous component in each stretch frequency and averaged viscosity were significantly higher in subjects with spasticity (P < 0.001). The viscous component and averaged viscosity were found highly correlated with the modified Ashworth scale. These findings suggest that measurements of viscous component and averaged viscosity during manual sinusoidal stretching using the portable device could be clinically useful in evaluating spasticity.  相似文献   

12.
The knee jerk was elicited during regular firing of relatively low-threshold motor units of the biceps femoris muscle (during weak voluntary contraction). Besides the reflex response of the rectus femoris muscle, synchronous discharges of motor units of the biceps femoris muscle and activation of new motor units also were observed. Poststimulus histograms and statistical analysis of interspike intervals of motor units of the biceps femoris muscle revealed well-marked excitatory influences synchronous with the reflex response of the rectus femoris. This result can be explained by the presence of excitatory inputs of Ia afferents on motoneurons of the antagonist muscle. In the knee jerk, excitation of motoneurons of the antagonist was followed by later inhibitory influences which evidently correspond to the "silent period" of motoneurons of the agonist muscle during the elicitation of its tendon reflex.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 624–632, November–December, 1976.  相似文献   

13.
Abstract

Purpose/Aim: There have been conflicting results regarding which muscle contribute most to the elbow spastic flexion deformity. This study aimed to investigate whether flexor spasticity of the elbow changed according to the position of the forearm, and to determine the muscle or muscles that contributed most to the elbow spastic flexion deformity by clinical examination.

Methods: This study is a single group, observational and cross-sectional study. Sixty patients were assessed for elbow flexor spasticity in different forearm positions (pronation, neutral and supination) with Modified Tardieu Scale. The primary outcome measure was a domain of the Modified Tardieu Scale, the dynamic component of spasticity (spasticity angle).

Results: In general, there was a significant difference between forearm positions regarding spasticity angle (p?<?.001). In pairwise comparisons, median spasticity angles in pronation (70 degrees) and neutral position (60 degrees) were significantly higher than those in supination (57.5 degrees) (adjusted p?<?.001 and adjusted p?=?.003, respectively). However, median spasticity angle in pronation did not differ significantly from those in neutral position in favour of pronation (adjusted p?=?.274).

Conclusions: The severity of spasticity changes according to the elbow position which suggests that the magnitude of contribution of each elbow flexor muscle to spastic elbow deformity is different. Reduction of spasticity from pronation to supination leads us to consider brachialis as the most spastic muscle. Since biceps was suggested to be the least spastic muscle in this study, and also to avoid spastic pronation deformity of the forearm, it should be rethought before performing chemodenervation into biceps muscle.  相似文献   

14.
During static conditions the nociceptive reflex is known to vary as a function of, for example, the stimulus position, stimulus intensity, and muscle contraction. The aim of the present human study was to investigate whether the reflex and the corresponding perception of pain are modulated by cyclic movements of the limb involved. Reflexes, evoked by nociceptive electric stimulation of the sural nerve, were recorded from the biceps femoris and the rectus femoris muscles in eight volunteers. Four different experiments were performed to compare the nociceptive reflex and pain score elicited during active isometric/dynamic flexion/extension of the knee joint. The amplitudes of the reflexes were largest for the dynamic conditions. The reflexes, evoked during dynamic extension and isometric contraction of the rectus femoris muscle, had the shortest latencies but the recordings from the biceps femoris muscle were larger than from the rectus femoris muscle. Knee joint angle recordings showed that the largest angle variations occurred for the dynamic conditions and were only marginally disturbed for the isometric conditions. A given stimulus intensity evoked the highest pain intensity during isometric contractions. This indicates that there would seem to be no causal relationship between the size of the nociceptive reflex and the pain intensity.  相似文献   

15.
Following injection of tetanus toxin into rat gastrocnemius muscle to produce hypertonia, plantar flexor muscles were allowed to shorten (S, n=5) without restraint or held lengthened (L, n=3) by splinting. Saline injected rats served as control (n=5). One week after injection, peak forces during 3 stretches with passive muscles and acute isometric force deficits produced by 15 stretches of electrically stimulated muscles were examined under pentobarbital anesthesia. Isometric force and mass of plantar flexors were similar in S rats but 16% lower in L rats compared to control. Peak passive forces were highest in S rats but not different between L rats and control. At the end of the stretch protocol, isometric force deficits were 26% larger in S rats compared to L rats and 17% smaller in L rats compared to control. Acute isometric force deficits produced by stretches of active skeletal muscles were dependent on the muscle length maintained during hypertonia. Our animal model could be used to test rehabilitation interventions during hypertonia of skeletal muscles.  相似文献   

16.
The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 +/- 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials (P < 0.01) and by 38% during the Recovery trials (P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials (P < 0.05) and by 28% during the Recovery trials (P < 0.01). The discharge rate of motor units increased from 10.3 +/- 2.7 pulses/s (pps) before vibration to 12.2 +/- 3.1 pps (P < 0.01) during the After trials and to 11.9 +/- 2.6 pps during the Recovery trials (P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle.  相似文献   

17.
The control of spasticity is often a significant problem in the management of patients with spasticity. The aim of this study was to evaluate the effect of a single session of prolonged muscle stretch (PMS) on the spastic muscle. Seventeen patients with spastic hemiplegia were selected to receive treatment. Subjects underwent PMS of the triceps surae (TS) by standing with the feet dorsiflexed on a tilt-table for 30 minutes. Our test battery consisted of four measurements including the modified Ashworth scale of the TS, the passive range of motion (ROM) of ankle dorsiflexion, the H/M ratio of the TS, and the F/M ratio of the tibialis anterior (TA). The results indicated that the passive ROM of ankle dorsiflexion increased significantly (p < 0.05) compared to that before PMS treatment. Additionally, PMS reduced motor neuron excitability of the TS and significantly increased that of the TA (p < 0.05). These results suggest that 30 minutes of PMS is effective in reducing motor neuron excitability of the TS in spastic hemiplegia, thus providing a safe and economical method for treating stroke patients.  相似文献   

18.
《IRBM》2022,43(6):670-677
IntroductionSpasticity is one of the most disabling neurological conditions, generally associated with pain and articular contracture. Its management involves multiple rehabilitation techniques, including botulinum toxin. Studies were developed with the intention of assessing the clinical effects of the Botulinum toxin (BoNT) injection in spastic muscles, however most of them, utilized subjective assessment methods. The aim of this study was to investigate the feasibility of applying Tonic Stretch Reflex Threshold (TSRT) method in clinical practice to assess the spasticity before and after BoNT injection and compare the results with those provided by methods traditionally used for this purpose: Modified Ashworth Scale (MAS) and Range of Motion (ROM).MethodsFive patients were evaluated before and after 21 days of BoNT injection in biceps brachii. Three parameters were considered: MAS, ROM of elbow and TSRT.ResultsAll patients presented improvement in ROM (p = 0.05) and TSRT (p = 0.06), with ROM average improvement bigger than TSRT. Two patients did not present evolution in MAS (p = 0.14).ConclusionsThe feasibility pilot study was the first to utilize the TSRT as an evaluation method after BoNT application. The TSRT method was able to identify improvement in patients that MAS did not able to, and is a good alternative to assess spasticity even when the evolution is small. Hence, TSRT showed to be an effective method for monitoring more precisely spasticity in BoNT treatment.  相似文献   

19.
目的:分析膝骨性关节炎患者(KOA)登梯时下肢肌群肌电活动与关节角冲量与正常人的差异,为康复方案设计提供生物力学参考。方法:采用Qualisys三维运动分析系统以及Delsys无线表面肌电系统对招募10名符合纳排标准的膝骨性关节炎患者和10名正常人进行登梯活动的步态检测,采用下肢肌群均方根值、股内外侧肌协同收缩比值、股二头肌和股外侧肌共同活动比值和髋、膝关节在冠状面和矢状面上角冲量对比分析与两组登梯时下肢肌群收缩模式对关节负荷的影响。结果:与正常对照相比,上梯时膝骨性关节炎患者股直肌均方根值RMS(Root Mean Square)增大(P0.05),膝骨性关节炎患者股内外侧肌收缩均方根值比值(RMS(Vastus Medialis)VM/(Vastus Lateralis)VL)减小(P0.05),膝骨性关节炎患者腘绳肌与股外侧肌收缩比值(RMS(Biceps Femoris)BF/VL增大(P0.05)。下梯时,膝骨性关节炎患者股直肌均方根值(RMS)增大(P0.05),臀大肌均方根值(RMS)减小(P0.05),股内外侧肌收缩均方根比值(RMS VM/VL)减小(P0.05)。上梯时,膝骨性关节炎患者髋、膝关节冠状面上的关节角冲量大于正常人(P0.05),膝关节在矢状面上关节角冲量大于正常组(P0.05),下梯髋、膝关节冠状面、矢状面上的角冲量无统计学差异(P0.05)。KOA组VM/VL、BF/VL与膝关节在冠状面和矢状面上的角冲量的改变没有直接的相关性(P0.05)。结论:膝骨性关节炎患者在登梯活动时股直肌的收缩活动增加,股内外侧肌的协同收缩下降,主动肌与拮抗肌的共同收缩增加,膝骨性关节炎患者在面对登梯活动时下肢肌群选择性激活和高激活状态协调一致,促进关节稳定。虽然下肢神经肌肉的收缩模式和膝关节负荷之间没有直接的相关性,可能是对膝关节负荷产生影响的生物力学因素较多,神经肌肉的收缩模式只是部分影响因素,后续将增加其他生物力学因素进一步研究。  相似文献   

20.
The effects of muscle spindle secondary ending activity on the stretch reflex were studied in unanesthetized decerebrate cats. Activation of secondary endings was accomplished by reducing the muscle temperature. This has been shown to cause a sustained asynchronous discharge from secondary endings. Cooling of the medial gastrocnemius or lateral gastrocnemius-soleus muscles caused an increase in the phasic and tonic components of their stretch reflexes. Cooling of the relaxed medial gastrocnemius muscle caused similar increases in the components of the stretch reflex of the synergistic lateral gastrocnemius-soleus muscle and an increase in its monosynaptic reflex. It was concluded that the facilitatory autogenetic and synergistic effects of muscle cooling on the stretch and monosynaptic reflexes were brought about by activity in group II afferents from muscle spindle secondary endings and could not be ascribed to any other type of muscle receptor. These results support the concept of an excitatory role for the secondary endings of the muscle spindle in the stretch reflex of the decerebrate cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号