首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Despite successful use of the ketogenic diet (KD) for the treatment of drug-resistant epilepsy, its mechanism of action is unclear. After KD-feeding, increased plasma D-beta-hydroxybutyrate (BHB) levels appear to be important for protection against seizures. We hypothesized that the KD leads to metabolic changes in the brain, which are reflected in the hippocampal extracellular fluid (hECF). CD1 mice were fed control or KD for 2-3 weeks since weaning. In vivo microdialysis of hECF was used to measure the levels of glucose, lactate, as well as BHB under basal conditions and during 30 min stimulation with 60 mM K(+), which was retrodialysed. The hECF BHB concentration in KD-fed mice was determined as 43.4±10.1 μM using the zero-flow method and 50.7±5.5 μM based on in vitro recovery. The total BHB concentration in brain homogenate from KD-fed mice was 180 nmol/g. The intracellular BHB concentration is therefore estimated to be about 3-fold higher than the extracellular level, which suggests that BHB in adolescent mouse brains may not be quickly metabolized. The basal hECF glucose concentration was 30% lower in KD-fed mice, indicating that glucose may be less important as an energy source. Lactate levels were similar in control and KD-fed mice. High potassium stimulation elevated lactate by 3-3.5-fold and decreased glucose by 40-50% in both diet groups, consistent with similar anaerobic and aerobic metabolism in both diet groups during high hippocampal activity. Overall, these data (1) defined the BHB concentration in the hippocampal extracellular fluid in KD-fed mice and (2) showed lower glucose metabolism compared to control diet-fed mice. This work will now enable other researchers to mimic the hippocampal extracellular environment in experiments aimed at deciphering the mechanisms of the KD.  相似文献   

2.
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.  相似文献   

3.
Six healthy subjects walked 37 km per day for four consecutive days on two occasions one month apart; on one walk, subjects consumed a high carbohydrate (CHO) diet (85 +/- 1% CHO, Mean +/- SE) and on the other walk an isocaloric low CHO diet (2 +/- 0% CHO) was consumed. Subjects were fasted each day until after the completion of the walk. Blood samples were obtained at rest prior to exercise and after completion of each of three laps of 12.3 km. Exercise intensity corresponded to approximately 17% of VO2max. The first day of each walk demonstrated that the pattern of substrate mobilisation in response to this type of exercise is highly reproducible, there being no difference in any of the parameters measured between the two walks. Circulating glucose, lactate, insulin and triglyceride levels remained essentially unchanged; alanine fell progressively and glycerol, free fatty acid (FFA) and 3-hydroxybutyrate (BHB) rose progressively. After the first day there was a general tendency for the blood glucose concentration to decline as exercise progressed; by the end of the walk on Day 2, blood glucose was lower on the low CHO diet than on the high CHO diet. On Day 4 plasma insulin was higher (p less than 0.05) on the high CHO diet than on the low CHO diet and declined progressively on both diets. Blood lactate and alanine concentrations were generally higher at rest on the high CHO diet, but fell so that no differences existed by the end of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

5.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

6.
This study examined the influence of acute altitude (AL) exposure alone or in combination with metabolic acid-base manipulations on the exercise ventilatory and blood lactate responses. Four subjects performed a 4 min, 30 W incremental test to exhaustion at ground level (GL) and a 4 min, 20 W incremental test during three acute exposures to a simulated altitude of 4200 m; (i) normal (NAL), (ii) following 0.2 g.kg-1 ingestion of sodium bicarbonate (BAL), and (iii) following 0.5 g.day-1 ingestion of acetazolamide for 2 days prior to exposure (AAL). VE.VO2-1 increased progressively throughout the incremental tests at AL and the minimum value was not related to a change in the blood lactate response. In contrast, the VE.VCO2-1 decreased initially to reach a minimum value at the same power output for each altitude trial and was related to a lactate threshold defined by a log-log transformation (r = 0.78). This transformation of the blood lactate data was not influenced by the altered acid-base states. The relative exercise intensity corresponding to both a delta lactate of 1 mM and an absolute lactate of 4 mM was significantly increased during the AAL (79.9 +/- 12.9 and 93.9 +/- 13.7% VO2max, respectively) compared with NAL (59.1 +/- 5.5 and 78.0 +/- 5.8% VO2max, respectively). These data suggest that strong relationships exist between the ventilatory and blood lactate response during AL exposure and altered acid-base states. Further, it is concluded that, unless the acid-base status is known, the use of an absolute or delta lactate value to compare submaximal exercise should be interpreted with caution.  相似文献   

7.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

8.
The effect of a single bout of exhaustive exercise on muscle lactate transport capacity was studied in rat skeletal muscle sarcolemmal (SL) vesicles. Rats were assigned to a control (C) group (n = 14) or an acutely exercised (E) group (n = 20). Exercise consisted of treadmill running (25 m/min, 10% grade) to exhaustion. SL vesicles purified from C and E rats were sealed because of sensitivity to osmotic forces. The time course of 1 mM lactate uptake in zero-trans conditions showed that the equilibrium level in the E group was significantly lower than in the C group (P < 0.05). The initial rate of 1 mM lactate uptake decreased significantly from 2.44 +/- 0.22 to 1.03 +/- 0.08 nmol. min(-1). mg protein(-1) (P < 0.05) after exercise, whereas that of 50 mM lactate uptake did not differ significantly between the two groups. For 100 mM external lactate concentration ([lactate]), exhaustive exercise increased initial rates of lactate uptake (219.6 +/- 36.3 to 465.4 +/- 80.2 nmol. min(-1). mg protein(-1), P < 0.05). Although saturation kinetics were observed in the C group with a maximal transport velocity of 233 nmol. min(-1). mg protein(-1) and a Michealis-Menten constant of 24.5 mM, saturation properties were not seen after exhaustive exercise in the E group, because initial rates of lactate uptake increased linearly with external [lactate]. We conclude that a single bout of exhaustive exercise significantly modified SL lactate transport activity, resulting in a decrease in 1 mM lactate uptake and was associated with alterations in the saturable properties at [lactate] above 50 mM. These results suggest that changes in sarcolemmal lactate transport activity may alter lactate and proton exchanges after exhaustive exercise.  相似文献   

9.
The paracrine renin-angiotensin-system (RAS) is increasingly recognized to play an important role in the regulation of both, regional vascular tone and regional glucose metabolism. To date, however, a selective investigation of paracrine RAS effects in an in vivo clinical setting was beyond technical reach. We here set out to selectively study the metabolic effects of paracrine RAS inhibition at different levels in healthy volunteers (n = 8). For this purpose bradykinin, enalaprilate and losartan were administered locally to the interstitial space fluid in skeletal muscle by means of reverse microdialysis and transcapillary glucose transport was measured simultaneously. During reverse microdialysis with bradykinin and enalaprilate a significant decrease in arterial-interstitial-gradient for glucose (AIG(glu)) was observed (from 1.49 +/- 0.08 mM to 0.12 +/- 0.63 mM (p = 0.018) for bradykinin and from 1.5 +/- 0.07 mM to 0.24 +/- 0.67 mM (p = 0.043) for enalaprilate). In contrast, losartan had no effect on AIG(glu). The changes in transcapillary glucose transport during bradykinin and enalaprilate administration were accompanied by significant increases in interstitial lactate levels which was most pronounced for bradykinin (from 0.14 +/- 0.01 mM to 0.40 +/- 0.07 mM, p = 0.018). We conclude that paracrine angiotensin-converting-enzyme (ACE) inhibition but not angiotensin II (AT-II) receptor blockade decreases AIG(glu) and facilitates transcapillary glucose transport due to an increase in interstitial bradykinin concentration. These results support the concept that blood pressure control with ACE-inhibitors but not with AT-II-receptor-antagonists has beneficial long term metabolic consequences in hypertensive, hyperinsulinemic subjects.  相似文献   

10.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

11.
We evaluated whether elevated blood lactate concentration during exercise in anemia is the result of elevated production or reduced clearance. Female Sprague-Dawley rats were made acutely anemic by exchange transfusion of plasma for whole blood. Hemoglobin and hematocrit were reduced 33%, to 8.6 +/- 0.4 mg/dl and 26.5 +/- 1.1%, respectively. Blood lactate kinetics were studied by primed continuous infusion of [U-14C]lactate. Blood flow distribution during rest and exercise was determined from injection of 153Gd- and 113Sn-labeled microspheres. Resting blood glucose (5.1 +/- 0.2 mM) and lactate (1.9 +/- 0.02 mM) concentrations were not different in anemic animals. However, during exercise blood glucose was lower in anemic animals (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and lactate was higher (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM). Blood lactate disposal rates (turnover measured with recyclable tracer, Ri) were not different at rest and averaged 136 +/- 5.8 mumol.kg-1.min-1. Ri was significantly elevated in both control (260.9 +/- 7.1 mumol.kg-1.min-1) and anemic animals (372.6 +/- 8.6) during exercise. Metabolic clearance rate (MCR = Ri/[lactate]) did not differ during rest (151 +/- 8.2 ml.kg-1.min-1); MCR was reduced more by exercise in anemic animals (64.3 +/- 3.8) than in controls (129.2 +/- 4.1). Plasma catecholamine levels were not different in resting rats, with pooled mean values of 0.45 +/- 0.1 and 0.48 +/- 0.1 ng/ml for epinephrine (E) and norepinephrine (NE), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-2D]glucose (Brooks et al. J. Appl. Physiol. 70:919-927, 1991) and [3-13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have examined the effects of glucose and lactate, the products of the gluconeogenic-glycolytic pathways, on phosphofructokinase flux during gluconeogenesis in hepatocytes from fasted rats. With dihydroxyacetone as substrate, phosphofructokinase flux is rather active. Addition of lactate, at concentrations of 5-10 mM, causes a lowering of this flux to the levels found when lactate alone is the substrate. Inhibitor studies suggest that a mitochondrially formed metabolite of lactate is the likely effector involved. Addition of glucose (10mM or greater) to dihydroxyacetone causes an increase in phosphofructokinase flux. Only small effects are seen unless the cells are preincubated with glucose, in which case an estimated 2-3-fold increase in phosphofructokinase flux occurs.  相似文献   

14.
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone.  相似文献   

15.
Five men were studied during exercise to exhaustion on an electrically braked cycle ergometer at 70% of VO2max. The four experimental treatments were as follows: fasted for 36 h (A); fasted (36 h) and refed with glucose (B) or glycerol (C); postabsorptive (overnight fast, D). In B and C the subjects were given a drink containing glucose or glycerol (1g per kg body weight) 45 min before starting exercise. A placebo drink was given 45 min before exercise on treatments A and D. Despite an increased availability of circulating free fatty acids, beta-hydroxybutyrate and glycerol exercise time to exhaustion was significantly lower after fasting (treatment A 77.7 +/- 6.8 min) compared with treatment D (119.5 +/- 5.8 min). Refeeding with glucose or glycerol did not significantly improve performance (92.4 +/- 11.8 min and 80.8 +/- 3.6 min respectively) compared with treatment A and lowered circulating levels of FFA and beta-HB during exercise compared with A. Despite the probability of low liver glycogen levels after fasting, none of the subjects became hypoglycaemic (blood glucose less than 4 mmol.l-1) during exercise and their blood lactate concentrations were not high at exhaustion. Plasma levels of branched chain amino acids (BCAA) decreased progressively during exercise on treatments A, B and C and were considerably lower at exhaustion compared with treatment D. Falling plasma concentrations of BCAA during prolonged exercise may be implicated in the generation of central fatigue.  相似文献   

16.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

17.
Plasma levels of lactate and oxypurines markedly increased in both fed and fasted rats exposed to three acute anoxic states, cyanide poisoning, carbon monoxide poisoning and inhalation of oxygen-deficient gas, suggesting that the transition of aerobic to anaerobic metabolism occurred similarly in both groups. Plasma glucose level of fed rats increased 1.8-2.5 times after exposure to anoxia, whereas a remarkable hypoglycemia was induced by the exposure of fasted rats to anoxia. Hepatic glycogen stores in fed rats induced hyperglycemia, while exhaustion of the stores in fasted rats resulted in severe hypoglycemia during acute anoxia.  相似文献   

18.
This study determined and compared rates and mechanisms of lactate transport in red blood cells (RBCs) of persons with 1) sickle cell disease (HbSS), 2) sickle cell trait (HbAS), and 3) a control group (HbAA). Blood samples were drawn from 30 African-American volunteers (10 HbSS, 10 HbAS, 10 HbAA). Lactate influx into RBCs was measured by using [14C]lactate at six (2, 5, 10, 15, 25, and 40 mM) unlabeled lactate concentrations. The monocarboxylate transporter pathway was blocked by p-chloromercuriphenylsulfonic acid to determine its percent contribution to total lactate influx. Generally, total lactate influx into RBCs from the HbSS group was significantly greater than influx into RBCs from HbAS or HbAA, with no difference between HbAS and HbAA. Faster influx into HbSS RBCs was attributed to increased monocarboxylate transporter activity [increased apparent Vmax (V'max)]. V'max (4.7 +/- 0.6 micromol x ml(-1) x min(-1)) for HbSS RBCs was significantly greater than V'max of HbAS RBCs (2.9 +/- 1.5 micromol x ml(-1) x min(-1)) and HbAA RBCs (2.0 +/- 0.5 micromol x ml(-1) x min(-1)). Km (42.8 +/- 8 mM) for HbSS RBCs was significantly greater than Km (27 +/- 12 mM) for HbAA RBCs. We suspect that elevated erythropoietin levels in response to chronic anemia and/or pharmacological treatment (erythropoietin injections, hydroxyurea ingestion) is the underlying mechanism for increased lactate transport capacity in HbSS RBCs.  相似文献   

19.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The objective was to determine ovarian follicular fluid concentrations of glucose, lactate, and pyruvate in relation to follicle size in buffalo and sheep. The effect of varying concentrations of these substances on in vitro oocyte maturation, oocyte protein content, and granulosa and cumulus cell growth was also investigated. Follicular fluid was aspirated from various sizes of follicles (from ovaries without a dominant follicle) collected from adult, cycling nonpregnant buffalo (Bubalus bubalis) and sheep (Ovis aries) during the breeding season. Overall, mean (+/-S.E.M.) concentrations (mM) were glucose 2.42+/-0.31 and 1.40+/-0.22, lactate 7.56+/-2.61 and 10.42+/-1.64, and pyruvate 0.02+/-0.01 and 0.002+/-0.00, in buffalo and sheep, respectively. In both species, as follicles became larger, concentrations of glucose significantly increased, lactate significantly decreased, but pyruvate was not affected. Oocyte maturation was higher (P<0.05) in medium containing supra-physiological concentrations of either glucose (5 mM), or pyruvate (10 mM) alone, or physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub- or supra-physiological concentrations of glucose, lactate and pyruvate in combination (both species). The protein content of oocytes was not significantly affected by the concentration of glucose, lactate, and pyruvate in the maturation medium. However, growth of granulosa and cumulus cells was higher (P<0.05) in medium containing supra-physiological concentrations of glucose (5 mM) alone, or pyruvate (10 mM) alone, or physiological, or supra-physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub-physiological concentrations of glucose, lactate and pyruvate in combination (both species). In conclusion, concentrations of glucose, pyruvate and lactate in the medium had cell type-specific effects on oocyte maturation, and on growth of granulosa and cumulus cells. Furthermore, glucose and pyruvate were the principal energy sources for oocytes and follicular somatic cells in buffalo and sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号