首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

3.
The present experiments were undertaken to assess dynamics of hepatic lactate and glucose balance in the over-night-fasted dog during 150 min of moderate-intensity treadmill exercise and 90 min of exercise recovery. Catheters were implanted chronically in an artery and portal and hepatic veins 16 days before experimentation. 3-3H-glucose was infused to determine hepatic glucose uptake, as well as tracer-determined glucose production by isotope dilution (Ra). At rest, net hepatic lactate output was 0.33 +/- 0.15 mg.kg-1.min-1 and increased to 2.26 +/- 0.82 mg.kg-1.min-1 after 10 min of exercise, after which it fell such that the liver was a net lactate consumer by the end of exercise and through recovery. In contrast to the rapid release of lactate, net hepatic glucose output rose gradually from 2.58 +/- 0.20 mg.kg-1.min-1 at rest to 8.87 +/- 0.85 mg.kg-1.min-1 after 60 min of exercise, beyond which it did not change significantly until the cessation of exercise. Hepatic glucose uptake at rest was 1.38 +/- 0.42 mg.kg-1.min-1 and did not change appreciably during exercise or recovery. Absolute hepatic glucose output (net glucose output plus uptake) rose from 3.96 +/- 0.45 mg.kg-1.min-1 at rest to 10.20 +/- 1.09 mg.kg-1.min-1 after 60 min of exercise and was 9.65 +/- 1.15 mg.kg-1.min-1 at 150 min of exercise. Ra rose from 3.34 +/- 0.21 mg.kg-1.min-1 to 7.58 +/- 0.73 and 8.59 +/- 0.77 mg.kg-1.min-1 at 60 and 150 min, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Blood lactate concentration during exercise decreases after acclimatization to high altitude, but it is not clear whether there is decreased lactate release from the exercising muscle or if other mechanisms are involved. We measured iliac venous and femoral arterial lactate concentrations and iliac venous blood flow during cycle exercise before and after acclimatization to 4,300 m. During hypoxia, at a given O2 consumption the venous and arterial lactate concentrations, the venous and arterial concentration differences, and the net lactate release were lower after acclimatization than during acute altitude exposure. While breathing O2-enriched air after acclimatization at a given O2 consumption the venous and arterial lactate concentrations and the venous and arterial concentration differences were significantly lower, and the net lactate release tended to be lower than while breathing ambient air at sea level before acclimatization. We conclude that the lower lactate concentration in venous and arterial blood during exercise after altitude acclimatization reflected less net release of lactate by the exercising muscles, and that this likely resulted from the acclimatization process itself rather than the hypoxia per se.  相似文献   

6.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

7.
This study examined the effects of acclimatization to 4,300 m altitude on changes in plasma ammonia concentrations with 30 min of submaximal [75% maximal O2 uptake (VO2max)] cycle exercise. Human test subjects were divided into a sedentary (n = 6) and active group (n = 5). Maximal uptake (VO2max) was determined at sea level and at high altitude (HA; 4,300 m) after acute (t less than 24 h) and chronic (t = 13 days) exposure. The VO2max of both groups decreased 32% with acute HA when compared with sea level. In the sedentary group, VO2max decreased an additional 16% after 13 days of continuous residence at 4,300 m, whereas VO2max in the active group showed no further change. In both sedentary and active subjects, plasma ammonia concentrations were increased (P less than 0.05) over resting levels immediately after submaximal exercise at sea level as well as during acute HA exposure. With chronic HA exposure, the active group showed no increase in plasma ammonia immediately after submaximal exercise, whereas the postexercise ammonia in the sedentary group was elevated but to a lesser extent than at sea level or with acute HA exposure. Thus postexercise plasma ammonia concentration was decreased with altitude acclimatization when compared with ammonia concentrations following exercise performed at the same relative intensity at sea level or acute HA. This decrease in ammonia accumulation may contribute to enhanced endurance performance and altered substrate utilization with exercise following acclimatization to altitude.  相似文献   

8.
To evaluate the ontogeny of neonatal glucose homeostasis, glucose production and lactate production have been measured in nine prematurely born appropriate for gestational age neonates [birth weight 1985 +/- 100 g, (SEM) gestational age 33.6 +/- 0.7 weeks] and five full term appropriate for gestational age neonates [birth weight 3254 +/- 111 g, gestational age 40.8 +/- 0.4 wks] and compared to six non pregnant, nondiabetic adults [weight of 57.7 +/- 2.2 kg, age 32 +/- 2 years]. Ra glucose (preterm) averaged 27.7 +/- 2.8 mumol.kg-1 min-1 (5.0 +/- 0.5 mg.kg-1 min-1) and Ra glucose (term) averaged 28.9 +/- 3.9 mumol.kg-1 min-1 (5.2 +/- 0.7 mg.kg-1 min-1); both were higher than the Ra glucose of the adult controls (16.1 +/- 2.8 mumol.kg-1 min-1 (2.9 +/- 0.5 mg.kg-1 min-1) (P less than 0.05 vs preterm and P less than 0.05 vs. term). Ra lactate (preterm) averaged 100 +/- 11.9 mumol.kg-1 min-1 (9.1 +/- 1.1 mg.kg-1 min-1) and Ra lactate (term) average 77.2 +/- 13.0 mumol.kg-1 min-1 (7.1 +/- 1.2 mg.kg-1 min-1); both were higher than the Ra lactate of the adult controls 35.9 +/- 6.5 mumol.kg-1 min-1 (3.3 +/- 0.6 mg.kg-1 min-1) (P less than 0.01 vs preterm and P less than 0.05 vs. term). The potential for gluconeogenesis from lactate was estimated by determining the ratio of [Ra Lactate/Ra Glucose]. The [Ra Lactate/Ra Glucose] (preterm) (187 +/- 12 (x10(-2)) was similar to that of the [Ra Lactate/Ra Glucose] (term) (136 +/- 16) (x10(-2)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To determine whether the working muscle is able to sustain ATP homeostasis during a hypoxic insult and the mechanisms associated with energy metabolic adaptations during the acclimatization process, seven male subjects [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg] were given a prolonged exercise challenge (45 min) at sea level (SL), within 4 h after ascent to an altitude of 4,300 m (acute hypoxia, AH), and after 3 wk of sustained residence at 4,300 m (chronic hypoxia, CH). The prolonged cycle test conducted at the same absolute intensity and representing 51 +/- 1% of SL maximal aerobic power (VO2 max) and between 64 +/- 2 (AH) and 66 +/- 1% (CH) at altitude was performed without a reduction in ATP concentration in the working vastus lateralis regardless of condition. Compared with rest, exercise performed during AH resulted in a greater increase (P < 0.05) in muscle lactate concentration (5.11 +/- 0.68 to 22.3 +/- 6.1 mmol/kg dry wt) than exercise performed either at SL (5.88 +/- 0.85 to 11.5 +/- 3.1) or CH (5.99 +/- 0.88 to 12.4 +/- 2.1). These differences in lactate concentration have been shown to reflect differences in arterial lactate concentration and glycolysis (Brooks et al. J. Appl. Physiol. 71: 333-341, 1991). The reduction in glycolysis at least between AH and CH appears to be accompanied by a tighter metabolic control. During CH, free ADP was lower and the ATP-to-free ADP ratio was increased (P < 0.05) compared with AH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We hypothesized that progesterone-mediated ventilatory stimulation during the midluteal phase of the menstrual cycle would increase exercise minute ventilation (VE; l/min) at sea level (SL) and with acute altitude (AA) exposure but would only increase arterial O2 saturation (SaO2, %) with AA exposure. We further hypothesized that an increased exercise SaO2 with AA exposure would enhance O2 transport and improve both peak O2 uptake (VO2 peak; ml x kg-1 x min-1) and submaximal exercise time to exhaustion (Exh; min) in the midluteal phase. Eight female lowlanders [33 +/- 3 (mean +/- SD) yr, 58 +/- 6 kg] completed a VO2 peak and Exh test at 70% of their altitude-specific VO2 peak at SL and with AA exposure to 4,300 m in a hypobaric chamber (446 mmHg) in their early follicular and midluteal phases. Progesterone levels increased (P < 0.05) approximately 20-fold from the early follicular to midluteal phase at SL and AA. Peak VE (101 +/- 17) and submaximal VE (55 +/- 9) were not affected by cycle phase or altitude. Submaximal SaO2 did not differ between cycle phases at SL, but it was 3% higher during the midluteal phase with AA exposure. Neither VO2 peak nor Exh time was affected by cycle phase at SL or AA. We conclude that, despite significantly increased progesterone levels in the midluteal phase, exercise VE is not increased at SL or AA. Moreover, neither maximal nor submaximal exercise performance is affected by menstrual cycle phase at SL or AA.  相似文献   

11.
Interleukin-6 (IL-6), an important cytokine involved in a number of biological processes, is consistently elevated during periods of stress. The mechanisms responsible for the induction of IL-6 under these conditions remain uncertain. This study examined the effect of alpha-adrenergic blockade on the IL-6 response to acute and chronic high-altitude exposure in women both at rest and during exercise. Sixteen healthy, eumenorrheic women (aged 23.2 +/- 1.4 yr) participated in the study. Subjects received either alpha-adrenergic blockade (prazosin, 3 mg/day) or a placebo in a double-blinded, randomized fashion. Subjects participated in submaximal exercise tests at sea level and on days 1 and 12 at altitude (4,300 m). Resting plasma and 24-h urine samples were collected throughout the duration of the study. At sea level, no differences were found at rest for plasma IL-6 between groups (1.5 +/- 0.2 and 1.2 +/- 0.3 pg/ml for placebo and blocked groups, respectively). On acute ascent to altitude, IL-6 levels increased significantly in both groups compared with sea-level values (57 and 84% for placebo and blocked groups, respectively). After 12 days of acclimatization, IL-6 levels remained elevated for placebo subjects; however, they returned to sea-level values in the blocked group. alpha-Adrenergic blockade significantly lowered the IL-6 response to exercise both at sea level (46%) and at altitude (42%) compared with placebo. A significant correlation (P = 0.004) between resting IL-6 and urinary norepinephrine excretion rates was found over the course of time while at altitude. In conclusion, the results indicate a role for alpha-adrenergic regulation of the IL-6 response to the stress of both short-term moderate-intensity exercise and hypoxia.  相似文献   

12.
We hypothesized that reliance on lactate as a means of energy distribution is higher after a prolonged period of acclimatization (9 wk) than it is at sea level due to a higher lactate Ra and disposal from active skeletal muscle. To evaluate this hypothesis, six Danish lowlanders (25 +/- 2 yr) were studied at rest and during 20 min of bicycle exercise at 146 W at sea level (SL) and after 9 wk of acclimatization to 5,260 m (Alt). Whole body glucose Ra was similar at SL and Alt at rest and during exercise. Lactate Ra was also similar for the two conditions at rest; however, during exercise, lactate Ra was substantially lower at SL (65 micro mol. min(-1). kg body wt(-1)) than it was at Alt (150 micro mol. min(-1). kg body wt(-1)) at the same exercise intensity. During exercise, net lactate release was approximately 6-fold at Alt compared with SL, and related to this, tracer-calculated leg lactate uptake and release were both 3- or 4-fold higher at Alt compared with SL. The contribution of the two legs to glucose disposal was similar at SL and Alt; however, the contribution of the two legs to lactate Ra was significantly lower at rest and during exercise at SL (27 and 81%) than it was at Alt (45 and 123%). In conclusion, at rest and during exercise at the same absolute workload, CHO and blood glucose utilization were similar at SL and at Alt. Leg net lactate release was severalfold higher, and the contribution of leg lactate release to whole body lactate Ra was higher at Alt compared with SL. During exercise, the relative contribution of lactate oxidation to whole body CHO oxidation was substantially higher at Alt compared with SL as a result of increased uptake and subsequent oxidation of lactate by the active skeletal muscles.  相似文献   

13.
Arterial O2 saturation (Sao2) decreases in hypoxia in the transition from rest to moderate exercise, but it is unknown whether other several weeks at high altitude SaO2 in submaximal exercise follows the same time course and pattern as that of ventilatory acclimatization in resting subjects. Ventilatory acclimatization is essentially complete after approximately 1 wk at 4,300 m, such that improvement in submaximal exercise SaO2 would then require other mechanisms. On days 2, 8, and 22 on Pikes Peak (4,300 m), 6 male subjects performed prolonged steady-state cycle exercise at 79% maximal O2 uptake (VO2 max). Resting SaO2 rose from day 1 (78.4 +/- 1.6%) to day 8 (87.5 +/- 1.4%) and then did not increase further by day 20 (86.4 +/- 0.6%). During exercise, SaO2 values (mean of 5-, 15-, and 30-min measurements) were 72.7% (day 2), 78.6% (day 8), and 82.3% (day 22), meaning that all of the increase in resting SaO2 occurred from day 1 to day 8, but exercise SaO2 increased from day 2 to day 8 (5.9%) and then increased further from day 8 to day 22 (3.7%). On day 22, the exercise SaO2 was higher than on day 8 despite an unchanged ventilation and O2 consumption. The increased exercise SaO2 was accompanied by decreased CO2 production. The mechanisms responsible for the increased exercise SaO2 require further investigation.  相似文献   

14.
Cerebral blood flow and O2 delivery during exercise are important for well-being at altitude but have not been studied. We expected flow to increase on arrival at altitude and then to fall as O2 saturation and hemoglobin increased, thereby maintaining cerebral O2 delivery. We used Doppler ultrasound to measure internal carotid artery flow velocity at sea level and on Pikes Peak, CO (4,300 m). In an initial study (1987, n = 7 men) done to determine the effect of brief (5-min) exercises of increasing intensity, we found at sea level that velocity [24.8 +/- 1.4 (SE) cm/s rest] increased by 15 +/- 7, 30 +/- 6, and 22 +/- 8% for cycle exercises at 33, 71, and 96% of maximal O2 uptake, respectively. During acute hypobaric hypoxia in a decompression chamber (inspired PO2 = 83 Torr), velocity (23.2 +/- 1.4 cm/s rest) increased by 33 +/- 6, 20 +/- 5, and 17 +/- 9% for exercises at 45, 72, and 98% of maximal O2 uptake, respectively. After 18 days on Pikes Peak (inspired PO2 = 87 Torr), velocity (26.6 +/- 1.5 cm/s rest) did not increase with exercise. A subsequent study (1988, n = 7 men) of the effect of prolonged exercise (45 min at approximately 100 W) found at sea level that velocity (24.8 +/- 1.7 cm/s rest) increased by 22 +/- 6, 13 +/- 5, 17 +/- 4, and 12 +/- 3% at 5, 15, 30, and 45 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Operation Everest II: muscle energetics during maximal exhaustive exercise   总被引:5,自引:0,他引:5  
To investigate the metabolic basis for the reduction in peak blood lactate concentration that occurs with maximal exercise after acclimatization to altitude, eight male subjects [maximal O2 uptake of 51.2 +/- 3.0 (SE) ml.kg-1.min-1] were acclimated to progressive hypobaria over a 40-day period. Before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) the subjects performed progressive cycle exercise to exhaustion. Analysis of muscle samples obtained from the vastus lateralis before exercise and at exhaustion indicated a pronounced reduction (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 282 Torr (39.2 +/- 11) compared with SL-1 (113 +/- 9.7), 380 Torr (94.6 +/- 18), and SL-2 (92.7 +/- 22). For the other glycolytic intermediates studied (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate) only the increase in glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate were blunted (P less than 0.05) at 282 Torr. The reduction in muscle glycogen concentration during exercise was similar (P less than 0.05) for all environmental conditions. Although exercise resulted in reductions (P less than 0.05) in ATP and creatine phosphate averaging 30 and 51%, respectively, the magnitude of the change was not dependent on the degree of hypobaria. Inosine monophosphate was elevated (P less than 0.05) approximately 11-fold with exercise at both SL-1 and SL-2. These findings support the hypothesis that the lower lactate concentration observed at 282 Torr after exhaustive exercise is due to a reduction in anaerobic glycolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

17.
Euglycemic-hyperinsulinemic clamps were performed on six healthy untrained individuals to determine whether exercise that induces muscle damage also results in insulin resistance. Clamps were performed 48 h after bouts of predominantly 1) eccentric exercise [30 min, downhill running, -17% grade, 60 +/- 2% maximal O2 consumption (VO2max)], 2) concentric exercise (30 min, cycle ergometry, 60 +/- 2% VO2max), or 3) without prior exercise. During the clamps, euglycemia was maintained at 90 mg/dl while insulin was infused at 30 mU.m-2.min-1 for 120 min. Hepatic glucose output (HGO) was determined using [6,6-2H]glucose. Eccentric exercise caused marked muscle soreness and significantly elevated creatine kinase levels (273 +/- 73, 92 +/- 27, 87 +/- 25 IU/l for the eccentric, concentric, and control conditions, respectively) 48 h after exercise. Insulin-mediated glucose disposal rate was significantly impaired (P less than 0.05) during the clamp performed after eccentric exercise (3.47 +/- 0.51 mg.kg-1.min-1) compared with the clamps performed after concentric exercise (5.55 +/- 0.94 mg.kg-1.min-1) or control conditions (5.48 +/- 1.0 mg.kg-1.min-1). HGO was not significantly different among conditions (0.77 +/- 0.26, 0.65 +/- 0.27, and 0.66 +/- 0.64 mg.kg-1.min-1 for the eccentric, concentric, and control clamps, respectively). The insulin resistance observed after eccentric exercise could not be attributed to altered plasma cortisol, glucagon, or catecholamine concentrations. Likewise, no differences were observed in serum free fatty acids, glycerol, lactate, beta-hydroxybutyrate, or alanine. These results show that exercise that results in muscle damage, as reflected in muscle soreness and enzyme leakage, is followed by a period of insulin resistance.  相似文献   

18.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

19.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We wished to determine the effect of a 25% hematocrit reduction on glucoregulatory hormone release and glucose fluxes during exercise. In five anemic dogs, plasma glucose fell by 21 mg/dl and in five controls by 7 mg/dl by the end of the 90-min exercise period. After 50 min of exercise, hepatic glucose production (Ra) and glucose metabolic clearance rate (MCR) began to rise disproportionately in anemics compared with controls. By the end of exercise, the increase in Ra was almost threefold higher (delta 15.1 +/- 3.4 vs. delta 5.2 +/- 1.3 mg X kg-1 X min-1) and MCR nearly fourfold (delta 24.6 +/- 8.8 vs. delta 6.5 +/- 1.3 ml X kg-1 X min-1). Exercise with anemia, in relation to controls resulted in elevated levels of glucagon [immunoreactive glucagon (IRG) delta 1,283 +/- 507 vs delta 514 +/- 99 pg/ml], norepinephrine (delta 1,592 +/- 280 vs. delta 590 +/- 155 pg/ml), epinephrine (delta 2,293 +/- 994 vs. delta 385 +/- 186 pg/ml), cortisol (delta 6.7 +/- 2.2 vs. delta 2.1 +/- 1.0 micrograms/dl) and lactate (delta 12.1 +/- 2.2 vs. delta 4.2 +/- 1.8 mg/dl) after 90 min. Immunoreactive insulin and free fatty acids were similar in both groups. In conclusion, exercise with a 25% hematocrit reduction results in 1) elevated lactate, norepinephrine, epinephrine, cortisol, and IRG levels, 2) an increased Ra which is likely related to the increased counterregulatory response, and 3) we speculate that a near fourfold increase in MCR is related to metabolic changes due to hypoxia in working muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号