首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

2.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

3.
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and the optimum pH ranged from 0.5 to 1.0. The residual total Cr was determined. It was found that dichromate reduction occurred at a low very low pH value. At biomass dose 6 g/l, almost all the Cr (VI) ions were removed in the optimum condition. Higher removal percentage was observed at lower initial concentrations of Cr (VI) ions, while the removal capacity of the biomass linearly depended on the initial Cr (VI) concentration. More than half of Cr (VI) ions were diminished within 1 h of contact and removal process reached a relative equilibrium in approximately 8 h. Almost all of the Cr (VI) ions were removed in 24 h when initial concentrations were below 100 mg/l. The equilibrium data were fitted in to the Langmuir and the Freundlich isotherm models and the correlated coefficients were gained from the models. A Fourier transform infrared spectra was employed to elucidate clearly the possible biosorption mechanism as well.  相似文献   

4.
Thermodynamic, kinetic and equilibrium studies during the biosorption of Basic blue 41(BB 41) from aqueous solution using Bacillus macerans were carried out with a focus on pH, contact time, temperature, biomass dosage and initial dye concentration. The maximum adsorption capacity was found to be 89.2 mg/g under optimal conditions of pH (10.0) and temperature (25 °C). The biosorption rates obtained were consistent with the pseudo‐second order kinetic models. The equilibrium data were analyzed using linearized forms of Langmuir and Freundlich isotherms, and the Langmuir isotherm was found to provide the best correlation of the experimental data for the biosorption of BB 41. The equilibrium time for the removal of BB 41 by the biomass was attained within 90 min. Thermodynamic parameters such as free energy (<$>\Delta G<$>), enthalpy (<$>\Delta H<$>), and entropy (<$>\Delta S<$>) were also calculated. The results indicate that biosorption is spontaneous and exothermic in nature. The negative value of entropy confirms the decreased randomness at the solid‐liquid interface during the adsorption of BB 41 onto Bacillus macerans.  相似文献   

5.
The biosorption characteristics of Pb(II) and Cr(III) ions from aqueous solution using the lichen (Parmelina tiliaceae) biomass were investigated. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by P. tiliaceae biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of P. tiliaceae biomass for Pb(II) and Cr(III) ions was found to be 75.8 mg/g and 52.1mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/mol for Cr(III) biosorption, indicating that the biosorption of both metal ions was taken place by chemical ion-exchange. The calculated thermodynamic parameters (delta G degrees , delta H degrees and delta S degrees ) showed that the biosorption of Pb(II) and Cr(III) ions onto P. tiliaceae biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

6.
This paper provided information on the use of linear sweep anodic stripping voltammetry for evaluating the process of copper biosorption onto Pseudomonas aeruginosa. This technique was suited to determine the concentration of free copper ion on site on the mercaptoethane sulfonate modified gold electrode surface without any pretreatment. It was in favor of the study of kinetic process as the fast changing kinetic data characteristic just after the beginning of biosorption could be accurately depicted. Based on the electrochemical results, the kinetics and equilibrium of biosorption were systematically examined. The pseudo-second-order kinetic model was used to correlate the kinetic experimental data and the kinetic parameters were evaluated. The Langmuir and Freundlich models were applied to describe the biosorption equilibrium. It was found that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. Maximum adsorption capacity of copper ion onto Pseudomonas aeruginosa was 0.9355 μmol mg−1 (about 59.4417 mg g−1).  相似文献   

7.
The ability of Penicillium purpurogenum to bind high amounts of chromium(VI) from aqueous solutions is demonstrated. Cr(VI) adsorption capacity increases with time during the first four hours and then leveled off toward the equilibrium adsorption capacity. Biosorption of Cr(VI) ions reached equilibrium in four hours. Binding of Cr(VI) ions with Penicillium purpurogenum biomass was clearly pH dependent. Cr(VI) loading capacity increased with increasing pH. The adsorption of Cr(VI) ions reached a plateau value at a pH of approx. 6.0. The maximum capacity of adsorption of Cr(VI) ions onto the fungal biomass was 36.5 mg/g. Adsorption behavior of Cr(VI) ions can be approximately described with the Langmuir equation. When applying the Langmuir model, the maximum adsorption capacity (Qmax) and the Langmuir constant were found to be 40 mg/g and 3.9 × 10–3 mg/L. Elution of Cr(VI) ions was performed by means of 0.5 M HCl. It was possible to use the biomass of Penicillium purpurogenum for six cycles for biosorption.  相似文献   

8.
Jatropha seed press cake (JPC), a biodeisel waste, was investigated for its use as biosorbent for Cr(VI) removal from wastewater. The acid-pretreated biomass exhibited 1.9-fold higher biosorption efficiency for Cr(VI). The Cr(VI) biosorption efficiency was found to increase with decrease in pH of aqueous medium. The adsorption capacity of biosorbent for Cr(VI) increased with increasing concentration of Cr(VI). The biosorption of Cr(VI) by acid-treated JPC followed a pseudo-second-order kinetics. The results of equilibrium studies showed that the biosorption process fitted the Langmuir isotherm model, with a maximum adsorption capacity of 22.727 mg of Cr(VI)/g of biosorbent at 30°C. The activation energy was found to be 27.114 kJ/mol, suggesting that the adsorption process was mainly a physical process. The important thermodynamic parameters of adsorption (ΔG, ΔH, andΔS) were determined, which indicated that the Cr(VI) sorption by JPC is a spontaneous and endothermic process.  相似文献   

9.
In this study, it was considered that the biosorption of heavy metals by biomass might occur during the bioleaching of fly ash. This work is focused on the biosorption behavior of Al, Fe, Pb and Zn by Aspergillus niger during the bioleaching process. The fungal biomass was contacted with heavy metals solution which extracted from fly ash by using gluconic acid as leaching agent. The equilibrium time for biosorption was about 120 min. The biosorption experiment data at initial pH 6.5 was used to fit the biosorption kinetics and isotherm models. The results indicated that the biosorption of Al, Fe and Zn by A. niger biomass were well described by the pseudo-first order kinetic model. The pseudo-second order kinetic model was more suitable for that of Pb. The Langmuir isotherm model could well describe the biosorption of Fe, Pb and Zn while the Freundlich model could well describe the biosorption of Al. Furthermore, the biosorption of metal ions decreased evidently in the presence of fly ash as compared to that in the absence of fly ash. This research showed that although the biomass sorption occurred during the bioleaching process, it did not inhibit the removal of Al, Fe, Pb and Zn evidently from fly ash.  相似文献   

10.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

11.
The capability of durian shell waste biomass as a novel and potential biosorbent for Cr(VI) removal from synthetic wastewater was studied. The adsorption study was performed in batch mode at different temperatures and pH. Langmuir and Freundlich isotherm models fit the equilibrium data very well (R2 > 0.99). The maximum biosorption capacity of durian shell was 117 mg/g. On modeling its kinetic experimental data, the pseudo-first order prevails over the pseudo-second order model. Thermodynamically, the characteristic of Cr-biosorption process onto durian shell surface was spontaneous, irreversible and endothermic.  相似文献   

12.
The removal of hexavalent chromium from aqueous solution was studied in batch experiments using dead biomass of three different species of marine Aspergillus after alkali treatment. All the cultures exhibited potential to remove Cr(VI), out of which, Aspergillus niger was found to be the most promising one. This culture was further studied employing variation in pH, temperature, metal ion concentration and biomass concentration with a view to understand the effect of these parameters on biosorption of Cr(VI). Higher biosorption percentage was evidenced at lower initial concentration of Cr(VI) ion, while the sorption capacity of the biomass increased with rising concentration of ions. Biomass as low as 0.8 g l−1 could biosorb 95% Cr(VI) ions within 2,880 min from an aqueous solution of 400 mg l−1 Cr(VI) concentration. Optimum pH and temperature for Cr(VI) biosorption were 2.0 and 50°C, respectively. Kinetic studies based on pseudo second order models like Sobkowsk and Czerwinski, Ritchie, Blanchard and Ho and Mckay rate expressions have also been carried out. The nature of the possible cell–metal ion interactions was evaluated by FTIR, SEM and EDAX analysis.  相似文献   

13.
Cr(VI) and Al(III) are environmental pollutants that are frequently encountered together in industrial wastewaters, e.g., from mining iron-steel, metal cleaning, plating, metal processing, automobile parts, and the manufacturing and dye industries. In this work, several variables that affect the capacity for chromium and aluminum biosorption by Chryseomonas luteola TEM05 were studied, particularly the effects of pH, metal concentration and contact time. Optimum adsorption pH values of Cr(VI) and Al(III) were determined as 4.0 and 5.0, respectively. The biosorption equilibrium was described by Freundlich and Langmuir adsorption isotherms. The value of Q o appears to be significantly higher for the Al(III) C. luteola TEM05 system. Langmuir parameters of C. luteola TEM05 also indicated a maximum adsorption capacity of 55.2 mg g–1 for Al(III) and 3.0 mg g–1 for Cr(VI).  相似文献   

14.
15.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

16.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

17.
18.
The sorption of highly toxic Cr(VI) ions by cassava waste biomass was quantitatively investigated. The sorption was found to be influenced by several physico-chemical factors such as agitation speed, temperature, contact time, pH, and sorbent/sorbate ratio. The adsorption data at equilibrium were fitted to Freundlich and Langmuir isotherms. The monolayer sorption capacity was found to be 61.79 mg of Cr(VI) per gram of biomass. The kinetics of Cr(VI) adsorption to pure cassava-tuber-bark wastes were determined based on a pseudo-second-order-rate model using the batch-sorption technique at a temperature of 30 degrees. The kinetics data suggest that the adsorption process is exothermic, and that the rate-limiting step is physisorption. Negative DeltaG(ads) values indicate that the adsorption is spontaneous and exothermic in nature. Also, under optimal conditions (in agitated 1M H(2)SO(4) at 30 degrees), the cassava waste biomass appears to be recyclable.  相似文献   

19.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

20.
Many kinds of biomass are being tested as a biosorption material for metal removal from the contaminated waters. In the present study the biosorption capacity of an organic solvent tolerant (OST) bacterium was investigated against Cr(VI) and Ni(II). The OST strain of Pseudomonas fluorescens TEM08 was isolated from an oil contaminated soil sample and grown in normal culture conditions (type I) and in the presence of the cyclohexane (type II). Two types of cells were used in the biosorption experiments to compare the organic solvent effect on the biosorption capacity. The biosorption equilibrium was described by Langmuir and Freundlich adsorption isotherms. The value of Q(0) was higher for type I cells (40.8 for Cr(VI); 12.4 for Ni(II)) then the type II (40.7 for Cr(VI); 11.2 for Ni(II)). The adsorption capacity constants (K(F)) of Freundlich model for type I cells and for type II cells were 10.87 and 8.78 for Ni(II) and 13.60 and 10.99 for Cr(VI), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号