首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The v-erbA oncogene, a transduced copy of a thyroid hormone receptor, plays an important role in establishment of the transformed cell phenotype induced by avian erythroblastosis virus. The ability of thyroid hormone receptors to bind to specific sites on chromatin and to thereby modify the expression of adjacent target genes is a crucial element in their mechanism of action in the normal cell. The v-erbA protein also bound at high affinity to a set of DNA fragments recognized by the rat thyroid hormone receptor, but the relative affinity of the v-erbA protein for the different binding sites was distinct from that previously reported for the thyroid hormone receptors.  相似文献   

4.
The avian erythroblastosis virus v-erbA oncogene is imprecisely derived from a cellular gene (c-erbA) encoding a thyroid hormone receptor: the v-erbA protein has sustained both small terminal deletions and internal amino acid sequence changes relative to c-erbA. We report here that one of these missense differences between v- and c-erbA proteins, located in a zinc finger DNA binding domain, has dramatic effects on the biological activities of the encoded protein. Back mutation of the viral coding sequence to resemble c-erbA at this site severely impairs erythroid transformation and produces subtle changes in DNA binding by the encoded protein, suggesting that differences in DNA binding by the viral and cellular proteins may be involved in the activation of v-erbA as an oncogene.  相似文献   

5.
6.
7.
M Sharif  M L Privalsky 《Cell》1991,66(5):885-893
The v-erbA oncoprotein of avian erythroblastosis virus is an aberrant version of a thyroid hormone receptor and functions in neoplasia by blocking erythroid differentiation and by modifying the growth properties of fibroblasts. v-erbA has been proposed to represent a novel dominant negative oncogene, acting in the cancer cell by interfering with the actions of its normal cell homologs, the thyroid hormone receptors. We report here that v-erbA can actually interfere with the actions of a variety of members of the steroid/retinoid receptor family and that the ability of v-erbA to act in neoplasia best correlates not with suppression of c-erbA action, but with interference with the retinoic acid receptor response. We suggest that v-erbA may act in neoplasia by promiscuously interfering with a retinoid-mediated differentiation process.  相似文献   

8.
9.
10.
11.
12.
13.
14.
K Damm  H Beug  T Graf    B Vennstrm 《The EMBO journal》1987,6(2):375-382
We have characterized the v-erbA and v-erbB oncogenes of td359, a transformation-defective mutant of avian erythroblastosis virus (AEV) unable to transform erythroblasts, and the revertant r12, obtained after in vivo passage of the mutant. Molecular cloning, sequencing, construction of chimeric viruses and testing of their oncogenic capacities revealed that both oncogenes of td359 are mutated and biologically defective. The r12 virus, although still containing a mutant v-erbB gene, recovered its erythroid transforming potential by acquiring a highly active gag-erbA gene. These results demonstrate that two co-operating oncogenes, an active v-erbA and a defective v-erbB, can transform a cell type not transformed by either oncogene alone. Furthermore, a single amino acid substitution inactivated the td359 v-erbA protein and we show that its reversion led to the reactivation of the protein. This lesion is located in the same region as several previously described inactivating mutations of glucocorticoid receptors, suggesting that the structure/function relationship of the virally transduced form of the c-erbA/thyroid hormone receptor is closely similar to that of steroid hormone receptors.  相似文献   

15.
16.
17.
N Koch  W Lauer  J Habicht    B Dobberstein 《The EMBO journal》1987,6(6):1677-1683
The gene for murine Ia-associated invariant (Ii) chains (Ii31 and Ii41) was characterized by sequence analysis. The gene extends over approximately 9 kb and is organized in nine exons. Exon 1 encodes the 5' untranslated region and the cytoplasmic segment, exon 2 the membrane spanning segment and adjacent amino acids and exons 3-8 the extracytoplasmic portion of Ii31. Putative promoter sequences were found upstream of the start of the coding sequence. Between exons 6 and 7 an additional, alternatively spliced exon 6b has been identified. This exon is spliced into the mRNA coding for the Ii-related Ii41 protein. Exon 6b encodes a cysteine-rich domain of 64 amino acids. It shows a remarkably high homology to the repetitive elements in thyroglobulin, a precursor for thyroid hormone. Based on this homology, it is suggested that this domain (TgR) in Tg and in Ii41 may play a role either in hormone formation or as a carrier in the transport of molecules (thyroid hormone or processed antigen respectively) between intracellular compartments.  相似文献   

18.
To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon nuclear expression of the cTR-alpha protein the cells become responsive to thyroid hormone, as detected by expression of a number of genes (malic enzyme, phosphoenolpyruvate carboxykinase, and Na+/K(+)-ATPase) reported to be indirectly induced by the hormone in vivo. In addition, our data show that the c-erbA product directly activates the Moloney murine leukemia virus promoter in a ligand-dependent manner. The data show that the chicken c-erbA-alpha protein can modulate the expression of rat genes under either direct or indirect control by thyroid hormone.  相似文献   

19.
L J DeGroot 《Biochimie》1989,71(2):269-277
Thyroid hormone nuclear receptor molecules have been characterized as proteins of approximately 49,000 molecular weight existing in cells attached to chromatin and with 4000-8000 copies per nucleus. They bind T3 with Ka of 0.2 X 10(10) l/mol and show microheterogeneity on isoelectric focusing. Hormone responsiveness varies with receptor content in the nucleus and occupancy of receptor by T3. Recent investigations have shown that the receptors are part of the v-erbA related super family of nuclear hormone receptors. At least two types of T3 receptors (TR) exist, one coded by a gene on chromosome 3 (TR beta) and a second coded on chromosome 17 (hTR alpha). Receptors are low in the fetus and, in the adult, are dramatically reduced by starvation, illness and glucagon. Receptors function through binding of T3 or other hormone analogs to a domain in the carboxyl portion of the protein, and binding of the receptor-T3 complex through 'DNA-fingers' to specific response elements as enhancers and located in the 5'-flanking DNA of thyroid hormone responsive genes. Extensive studies on regulation of rat growth hormone have suggested binding of receptor or associated factors to several positions in the 5'-flanking DNA, and recent studies suggest that a crucial area may be a 15 bp segment between bases -179 and -164. Abnormal receptors are believed to be responsible for the syndrome of generalized resistance to thyroid hormone action, but it is yet unclear as to which form (or forms) of the receptor is abnormal in this syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号