首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

2.
Five synthetic fragments of the N-terminal domain of the alpha7 subunit of the human nicotinic acetylcholine receptor (alpha7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (alpha7 nAChRalpha). The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the alpha7 subunit: 1-23, 98-106, 159-168, and 173-188 (or 179-188).  相似文献   

3.
Rat adipose tissue possesses two Bordetella pertussis toxin (PTX) substrates and, in the same 39-41 kDa molecular mass range, positive immunoreactivity has also been reported with antibodies against the alpha subunit of Go, the major brain GTP-binding protein (G-protein). In this study, the presence of the brain Go alpha subunit at 39 kDa in adipocytes was reassessed, since direct correspondence between PTX substrates and Go alpha immunoreactivity has not yet been clearly established. On resolutive SDS/polyacrylamide-gel electrophoresis, the PTX substrates of human adipocytes were compared with the three PTX substrates found in brain. No ADP-ribosylated substrate at the level of the 39 kDa brain Go alpha could be detected in adipocyte membranes. Immunoblotting of human adipocyte membranes stained with our anti-Go alpha antibodies confirmed the presence of a positive immunoreactivity in this tissue, but the apparent molecular mass of the immunoreactive polypeptide in adipocytes was higher than that found in nervous tissues. Taken together, these results indicate that the brain Go alpha subunit is not present in adipose tissue. They also suggest the existence of a G-protein in adipocytes which is immunologically related to Go alpha but having a slightly higher molecular mass.  相似文献   

4.
Deficits of cortical nicotinic acetylcholine receptors (nAChRs) have been observed in Alzheimer's disease (AD) by receptor binding assays. Little is known about the receptor subunit specificity influenced by AD, and it might be of importance for therapeutic strategies. In the present study, the protein levels of nAChR alpha3, alpha4, alpha7, and beta2 subunits were investigated using western blot analysis on postmortem brains of patients with AD and age-matched controls. The results showed that in human postmortem brain samples, bands with molecular masses of 52, 42, and 50 kDa were detected by anti-alpha4, anti-alpha7, and anti-beta2 antibodies, respectively. When anti-alpha3 antibody was used, one major band of 49 kDa and two minor bands of 70 and 38 kDa were detected. In AD patients, as compared with age-matched controls, the alpha4 subunit was reduced significantly by approximately 35 and 47% in the hippocampus and temporal cortex, respectively. A significant reduction of 25% in the alpha3 subunit was also observed in the hippocampus and a 29% reduction in the temporal cortex. For the alpha7 subunit, the protein level was reduced significantly by 36% in the hippocampus of AD patients, but no significant change was detected in the temporal cortex. In neither the hippocampus nor the temporal cortex was a significant difference observed in the beta2 subunit between AD patients and controls. These results reveal brain region-specific changes in the protein levels of the nAChR alpha3, alpha4, and alpha7 subunits in AD.  相似文献   

5.
Five synthetic fragments of the N-terminal domain of the α7 subunit of the human nicotinic acetylcholine receptor (α7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (α7 nAChRα. The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the α7 subunit: 1–23, 98–106, 159–168, and 173–188 (or 179–188).  相似文献   

6.
7.
Peptides corresponding to sequence segments homologous to an alpha-bungarotoxin (alpha-BGT) binding region on the alpha subunit of the Torpedo nicotinic cholinergic receptor (nAChR) were synthesized for each identified nAChR alpha subunit of the rat nervous system (alpha 1, which is expressed in muscle, and alpha 2, alpha 3, alpha 4, and alpha 5, which are expressed by neurons). The peptides were tested for their ability to directly bind 125I-alpha-BGT and to compete for 125I-alpha-BGT with Torpedo nAChR and with the alpha-BGT-binding component expressed by PC12, a sympathetic neuronal cell line. In addition to peptides of the muscle alpha 1 subunit, peptides corresponding to the sequence of a neuronal subunit, alpha 5, were able to bind 125I-alpha-BGT. Peptides containing the sequence segments 182-201 of the alpha 1 subunit and 180-199 of the alpha 5 subunit competed with Torpedo nAChR for 125I-alpha-BGT binding with IC50 values of 0.5 and 3.5 microM, respectively. Both of these peptides were also able to compete for 125I-alpha-BGT binding with native Torpedo nAChR and with the alpha-BGT-binding protein(s) expressed on PC12 cells. To determine if other sequence segments contribute to form the neuronal alpha-BGT-binding site, overlapping peptides corresponding to the putative extracellular domain of the alpha 5 subunit were synthesized and used both in direct binding assays and in competition experiments. Peptides corresponding to amino acids 16-35 and 180-199 of the alpha 5 subunit directly bound 125I-alpha-BGT and inhibited the binding of toxin to both Torpedo nAChR and PC12 cells. The results of these studies strongly support identification of the alpha 5 subunit as a component of a neuronal alpha-BGT-binding nAChR.  相似文献   

8.
Potential B epitopes and T-helper epitopes in the N-terminal extracellular domain of the alpha7-subunit of human acetylcholine receptor (AChR) were theoretically calculated in order to reveal peptides that can induce the formation of specific antibodies to this domain. Four peptides structurally corresponding to four alpha7-subunit regions containing 16-23 aa and three of their truncated analogues were synthesized. Rabbits were immunized with both free peptides and protein conjugates of their truncated analogues, and a panel of antibodies to various exposed regions of the N-terminal extracellular domain of the AChR alpha7-subunit was obtained. All of the four predicted peptides were shown to induce the production of antipeptide antibodies in free form, without conjugation with any protein carrier. The free peptides and the protein conjugates of truncated analogues induced the formation of almost equal levels of antibodies. Most of the obtained antisera contained antibodies that bind to the recombinant extracellular N-terminal domain of the rat AChR alpha7-subunit and do not react with the analogous domain of the alpha1-subunit of the ray Torpedo californica AChR.  相似文献   

9.
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and alpha4beta2nAChR were determined using the subtype-selective nicotinic receptor ligands [(3)H]methyllycaconitine and [(3)H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Abeta(1-42) bound to the alpha7nAChR with exceptionally high affinity, as indicated by K(i) values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the alpha7nAChR, the affinity of Abeta(1-42) for the alpha4beta2nAChR was approximately 5,000-fold lower, as indicated by corresponding K(i) values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Abeta(1-42) and alpha7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.  相似文献   

10.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) that contain an alpha7 subunit are widely distributed in neuronal and nonneuronal tissue. These receptors are implicated in the release of neurotransmitters such as glutamate and in functions ranging from thought processing to inflammation. Currently available ligands for alpha7 nAChRs have substantial affinity for one or more other nAChR subtypes, including those with an alpha1, alpha3, alpha6, and/or alpha9 subunit. An alpha-conotoxin gene was cloned from Conus arenatus. Predicted peptides were synthesized and found to potently block alpha3-, alpha6-, and alpha7-containing nAChRs. Structure-activity information regarding conotoxins from distantly related Conus species was employed to modify the C. arenatus derived toxin into a novel, highly selective alpha7 nAChR antagonist. This ligand, alpha-CtxArIB[V11L,V16D], has low nanomolar affinity for rat alpha7 homomers expressed in Xenopus laevis oocytes, and antagonism is slowly reversible. Kinetic analysis provided insight into the mechanism of antagonism. alpha-CtxArIB interacts with five ligand binding sites per alpha7 receptor, and occupation of a single site is sufficient to block function. The peptide was also shown to be highly selective in competition binding assays in rat brain membranes. alpha-CtxArIB[V11L,V16D] is the most selective ligand yet reported for alpha7 nAChRs.  相似文献   

12.
The purified Na+ channel from rat brain consists of alpha (260 kDa), beta 1 (36 kDa), and beta 2 (33 kDa) subunits. Pure beta 1 subunits were prepared from purified rat brain Na+ channels which had been adsorbed to hydroxylapatite resin and used to prepare specific anti-beta 1 subunit antiserum. Antibodies purified from this antiserum by antigen affinity chromatography immunoprecipitate 125I-labeled, purified beta 1 subunits and purified Na+ channels (measured as high affinity [3H] saxitoxin binding sites) and recognize beta 1 subunits on immunoblots of solubilized rat brain membranes. The affinity-purified anti-beta 1 antibodies recognize beta 1 subunits in rat spinal cord, heart, skeletal muscle, and sciatic nerve, but do not detect immunoreactive beta 1 subunits in eel electroplax or eel brain. The developmental time course of expression of immunoreactive beta 1 subunits in rat forebrain was measured by immunoprecipitation followed by immunoblotting with affinity-purified anti-beta 1 antibodies. The amount of immunoreactive beta 1 subunits increased steadily to adult levels during the first 21 days of postnatal development.  相似文献   

13.
Ca(2+)-channel was purified 230-fold from digitonin extracts of the porcine cardiac sarcolemmal membranes by means of a four-step procedure. Two antibodies, a site-directed antibody against the sequence 1691-1707 of the rabbit cardiac alpha 1 subunit (anti-CCP5) and a monoclonal antibody directed to rabbit skeletal muscle alpha 2 delta subunit-complex (MCC-1), effectively immunoprecipitated the 125I-labeled cardiac Ca(2+)-channel complex in 0.2% digitonin. SDS-PAGE analysis of the immunoprecipitates under reducing conditions revealed that the cardiac channel is mainly composed of two large polypeptides of 190 and 150 kDa, and five smaller polypeptides of 60, 55, 35, 30, and 25 kDa. An additional polypeptide of either 79 or 55 kDa is crosslinked with the 190 kDa component to form 250-270 kDa (approximately 270 kDa) to the extent of 15-20% through disulfide bond(s). The 190 kDa component (alpha 1) is responsible for photoaffinity labeling with [3H]diazepine, since minor photolabeled approximately 270 kDa was converged to the major labeled 190 kDa component when electrophoresed under reducing conditions. The 150 kDa component (alpha 2) was derived by reduction of disulfide bonds from another 190 kDa component of glycopolypeptide which was separated from the channel complex in 1% Triton X-100 and capable of binding to WGA-Sepharose. The four smaller components of 60, 35, 30, and 25 kDa were not covalently associated with the large components through disulfide bonds, whereas the 55 kDa polypeptide was suggested to be a mixture of two kinds of peptides with respect to the disulfide bond: one was crosslinked with alpha 1 through disulfide linkage and the other was not covalently associated with any other component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: Ligand-gated ion channels are oligomeric transmembrane proteins that usually contain more than one kind of monomer. The variety of monomers available to participate in oligomer formation and the apparent latitude in acceptable monomer combinations allows considerable diversity. Mechanisms for identifying the monomers comprising specific receptors are needed. We have generated affinity-purified polyclonal antisera that recognize the extracellular domain of nine neuronal nicotinic acetylcholine receptor (nAChR) subunits and distinguish between them. We prepared these antisera by immunizing rabbits with bacterially expressed recombinant protein representing the N-terminal extracellular domain of each neuronal nAChR subunit followed by affinity purification of antibodies against synthetic peptides corresponding to residues 68–81 of the α1 subunit. We demonstrate subunit specificity of each affinity-purified antisera by western blots of the bacterially expressed protein and immunoblot against peptide. We further used these antibodies to demonstrate expression of neuronal nAChR subunits on the surface of transiently transfected simian kidney (COS-7) cells.  相似文献   

15.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

16.
We have produced rabbit antibody against a synthetic peptide corresponding to N-terminal region of the extracellular domain of human thyrotropin receptor (hTSH-R) (N peptide, aminoacid residues 29-57). Western blot analysis revealed that N-peptide antibody recognized recombinant hTSH-R stably expressing in CHO-K1 cells as a mol. wt. about 104 kDa regardless in the presence or absence of disulfide-reducing agent. The band was not detected in untransfected CHO-K1 cells and no band was also stained by the antibody absorbed with N-peptide. In a reducing condition, the antibody also bound the rat receptor from FRTL5 cells as the same molecular size (104 kDa). These results clearly indicate that TSH-R is composed of a single subunit and that two subunit model for the TSH-R may reflect artifactual proteolytic cleavage of the receptor during membrane preparation.  相似文献   

17.
Dunckley T  Wu J  Zhao L  Lukas RJ 《Biochemistry》2003,42(4):870-876
Nicotinic acetylcholine receptors (nAChR) containing alpha7 subunits self-assemble into simple, homopentameric complexes. However, successful heterologous expression of functional alpha7-nAChR has only been achieved in a few host cell types, such as the SH-EP1 human epithelial cell line. All ionotropic glycine receptor, GABA(A) receptor, 5-HT(3) receptor, and nAChR subunits contain a pair of highly conserved cysteine residues (C150 and C164 for alpha7 subunits) in their N-terminal extracellular domain. These residues are thought to be involved in the formation of a conserved cystine loop that is critical to the proper folding and assembly of subunits. However, nAChR alpha7 (and alpha8) subunits also contain a third cysteine residue, C138, N-terminal to the conserved cysteine pair. Using SH-EP1 cells as a host for heterologous expression, we evaluated the roles of C138, C150, and C164 in subunit folding, assembly, and cell surface expression and function of alpha7-nAChR. Results indicate that mutation of C138, but not of C150 or C164, yields an nAChR that can assemble to form (125)I-labeled alpha-bungarotoxin binding sites expressed on the cell surface. Further, whole-cell patch clamp recordings demonstrate that mutation of C138 to alanine does not alter the function of the fully assembled alpha7-nAChR. These results indicate that C150 and C164 are required for surface expression, but that C138 is neither necessary for nor inhibitory toward the surface expression and function of human alpha7-nAChR. These results suggest that disulfide bond formation between C138 and either C150 or C164, if it occurs, has no significant effect on alpha7-nAChR assembly or function.  相似文献   

18.
Neuronal nicotinic receptors (nAChRs) are expressed in the brain but also in the peripheral tissues including the adrenal medulla. However, it is unclear which nAChRs are present in the human adrenal medulla. In the study, receptor binding assay, Western blot and RT-PCR have been performed to investigate the expression of nAChRs in adrenal medulla from human, rat and mouse. The results showed that in human adult adrenal medulla, mRNAs for nAChR alpha3, alpha4, alpha5, alpha7, beta2, beta3, and beta4 subunits but not beta2 in the fetal human adrenal medulla were expressed. Saturation binding of [3H]epibatidine showed two binding sites in human aged adrenal medulla. The specific binding of [3H]epibatidine (0.1 nM) was significantly higher in human fetal compared to human aged adrenal medulla. mRNAs for the alpha3, alpha4, alpha5, alpha7, beta2, and beta4 subunits but not the beta3 were detectable in adult rat and mouse adrenal medulla. No differences in gene-expression of the nAChRs were observed between new born, adult and aged rat adrenal medulla. Saturation binding of [3H]epibatidine showed only one binding site in rat adrenal medulla. Lower protein levels for the nAChR subunits were observed in the rat adrenal medulla compared to rat brain. There was lower protein levels of the nAChRs in aged rat adrenal medulla compared to the young rats. Sub-chronic treatment of nicotine to rats did not influence level of the nAChRs in the adrenal medulla. In conclusion, the expression of nAChRs in adrenal medulla is age- related and species dependent.  相似文献   

19.
Screening of a rat brain cDNA library with a radiolabeled probe made from an alpha 3 cDNA (Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemanns, S., and Patrick, J. (1986) Nature 319, 368-374) resulted in the isolation of a clone whose sequence encodes a protein, beta 3, which is homologous (40-55% amino acid sequence identity) to previously described neuronal nicotinic acetylcholine receptor subunits. The encoded protein has structural features found in other nicotinic acetylcholine receptor (nAChR) subunits. Two cysteine residues that correspond to cysteins 128 and 142 of the Torpedo nAChR alpha subunit are present in beta 3. Absent from beta 3 are 2 adjacent cysteine residues that correspond to cysteines 192 and 193 of the Torpedo subunit. In situ hybridization histochemistry, performed using probes derived from beta 3 cDNAs, demonstrated that the beta 3 gene is expressed in the brain. Thus, beta 3 is the fifth member of the nAChR gene family that is expressed in the brain. The pattern of beta 3 gene expression partially overlaps with that of the neuronal nAChR subunit genes alpha 3, alpha 4, or beta 2. These results lead us to propose that the beta 3 gene encodes a neuronal nAChR subunit.  相似文献   

20.
Preconditioning of the cerebral cortex was induced in mice by repeated cortical spreading depression (CSD), and the major ionotropic glutamate (GluRs) and nicotinic acetylcholine receptor (nAChRs) subunits were compared by quantitative immunoblotting between sham- and preconditioned cortex, 24 h after treatment. A 30% reduction in alpha-amino-3-hydroxy-5-methyl-4-iso- xazolepropionate (AMPA) GluR1 and 2 subunit immunoreactivities was observed in the preconditioned cortex (p < 0.03), but there was no significant change in the NMDA receptor subunits, NR1, NR2A and NR2B. A 12-15-fold increase in alpha7 nAChR subunit expression following in vivo CSD (p < 0.001) was by far the most remarkable change associated with preconditioning. In contrast, the alpha4 nAChR subunit was not altered. These data point to the alpha7 nAChR as a potential new target for neuroprotection because preconditioning increases consistently the tolerance of the brain to acute insults such as ischaemia. These data complement recent studies implicating alpha7 nAChR overexpression in the amelioration of chronic neuropathologies, notably Alzheimer's disease (AD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号