首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2) subunits, we performed electrophysiological and biochemical experiments. In tsA201 cells expressing either wild type or C-terminal-truncated alpha(1C) subunits in combination with a beta(2a) subunit, truncation of the alpha(1C) subunit by as little as 147 amino acids led to a 10-15-fold increase in currents compared with those obtained from control, full-length alpha(1C) subunits. Dialysis of cells expressing the truncated alpha(1C) subunits with C-terminal fragments applied through the patch pipette reconstituted the inhibition of the channels seen with full-length alpha(1C) subunits. In addition, C-terminal deletion mutants containing a tethered C terminus also exhibited the C-terminal-induced inhibition. Immunoprecipitation assays demonstrated the association of the C-terminal fragments with truncated alpha(1C) subunits. In addition, glutathione S-transferase pull-down assays demonstrated that the C-terminal inhibitory fragment could associate with at least two domains within the C terminus. The results support the hypothesis the C- terminal fragments of the alpha(1C) subunit can associate with C-terminal-truncated alpha(1C) subunits and inhibit the currents through L-type Ca(2+) channels.  相似文献   

2.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

3.
Talin, consisting of a 47-kDa N-terminal head domain (residues 1-433) and a 190-kDa C-terminal rod domain (residues 434-2541), links integrins to the actin cytoskeleton. We previously reported that the binding stoichiometry of integrin alpha(IIb)beta(3):talin is approximately 2:1. More recently, an integrin binding site has been localized to the talin head domain. In the present study, we identified another integrin binding site at the C-terminal region of the talin rod domain. In a solid phase binding assay, RGD affinity-purified alpha(IIb)beta(3) bound in a dose-dependent manner to microtiter wells coated with the isolated 190-kDa proteolytic fragment of the talin rod domain. Additionally, alpha(IIb)beta(3) also bound to the talin rod domain captured by 8d4, an anti-talin monoclonal antibody. Polyclonal antibodies raised against a recombinant protein fragment corresponding to the entire talin rod domain (anti-talin-R) inhibited alpha(IIb)beta(3) binding to intact talin by approximately 50% but completely blocked alpha(IIb)beta(3) binding to the talin rod domain. To localize the integrin binding site, we examined alpha(IIb)beta(3) binding to recombinant polypeptide fragments corresponding to partial sequences of the talin rod domain. Whereas alpha(IIb)beta(3) bound effectively to talin-(1075-2541) and talin-(1984-2541), it failed to bind to talin-(434-1076) and talin-(434-1975). Furthermore, the binding of alpha(IIb)beta(3) to talin-(1984-2541) was inhibited by anti-talin-R. These results indicate that an integrin binding site is located within residues 1984-2541 of the talin rod domain. Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus. Because talin exists as an anti-parallel homodimer in focal adhesions, the two integrin binding sites in the adjacent talin molecules would be in close proximity with each other.  相似文献   

4.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

5.
G-protein-mediated inhibition of presynaptic voltage-dependent Ca(2+) channels is comprised of voltage-dependent and -resistant components. The former is caused by a direct interaction of Ca(2+) channel alpha(1) subunits with G beta gamma, whereas the latter has not been characterized well. Here, we show that the N terminus of G alpha(o) is critical for the interaction with the C terminus of the alpha(1A) channel subunit, and that the binding induces the voltage-resistant inhibition. An alpha(1A) C-terminal peptide, an antiserum raised against G alpha(o) N terminus, and a G alpha(o) N-terminal peptide all attenuated the voltage-resistant inhibition of alpha(1A) currents. Furthermore, the N terminus of G alpha(o) bound to the C terminus of alpha(1A) in vitro, which was prevented either by the alpha(1A) channel C-terminal or G alpha(o) N-terminal peptide. Although the C-terminal domain of the alpha(1B) channel showed similar ability in the binding with G alpha(o) N terminus, the above mentioned treatments were ineffective in the alpha(1B) channel current. These findings demonstrate that the voltage-resistant inhibition of the P/Q-type, alpha(1A) channel is caused by the interaction between the C-terminal domain of Ca(2+) channel alpha(1A) subunit and the N-terminal region of G alpha(o).  相似文献   

6.
The MET proto-oncogene encodes a transmembrane tyrosine kinase of 190 kDa (p190MET), which has recently been identified as the receptor for hepatocyte growth factor/scatter factor. p190MET is a heterodimer composed of two disulfide-linked chains of 50 kDa (p50 alpha) and 145 kDa (p145 beta). We have produced four different monoclonal antibodies that are specific for the extracellular domain of the Met receptor. These antibodies immunoprecipitate with p190MET two additional Met proteins of 140 and 130 kDa. The first protein (p140MET) is membrane bound and is composed of an alpha chain (p50 alpha) and an 85-kDa C-terminal truncated beta chain (p85 beta). The second protein (p130MET) is released in the culture supernatant and consists of an alpha chain (p50 alpha) and a 75-kDa C-terminal truncated beta chain (p75 beta). Both truncated forms lack the tyrosine kinase domain. p140MET and p130MET are consistently detected in vivo, together with p190MET, in different cell lines or their culture supernatants. p140MET is preferentially localized at the cell surface, where it is present in roughly half the amount of p190MET. The two C-terminal truncated forms of the Met receptor are also found in stable transfectants expressing the full-length MET cDNA, thus showing that they originate from posttranslational proteolysis. This process is regulated by protein kinase C activation. Together, these data suggest that the production of the C-terminal truncated Met forms may have a physiological role in modulating the Met receptor function.  相似文献   

7.
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.  相似文献   

8.
P-glycoprotein is an energy-dependent drug efflux pump with broad specificity for hydrophobic antitumor agents such as vinblastine, doxorubicin, and taxol. We have previously shown that [3H]azidopine and [125I] iodoaryl azidoprazosin, which are photoaffinity probes for the alpha 1-subunit of the L-type calcium channel and alpha 1-adrenergic receptor, respectively, specifically interact with P-glycoprotein, partially reverse multidrug resistance, and bind to a 6-kDa common domain in the 140-kDa P-glycoprotein molecule (Greenberger, L., Yang, C.-P. H., Gindin, E., and Horwitz, S. B. (1990) J. Biol. Chem. 265, 4394-4401). An immunological approach was used to identify the position of photoaffinity drug-binding domains in P-glycoprotein. Analysis was done with a series of site-specific rabbit polyclonal antibodies to peptides that mimic domains in the mouse mdr1b gene product. The antibodies were made against amino acid residues 269-284, 356-373, 665-682, 740-750, 907-924, and 1203-1222. Upon trypsin digestion, cleavage products of 95 and 55 kDa were obtained, which after further digestion migrated at 60 and 40 kDa, respectively. The 40-kDa fragment was recognized by the antibodies to residues 1203-1222 and 919-1276, while the 55-kDa fragment was recognized by these antibodies plus antibodies to residues 740-750 and 907-924. In contrast, the 95- and 60-kDa trypsin fragments were recognized only by the antibody to residues 269-284. The 55- and 40-kDa fragments, as well as the 95- and 60-kDa fragments, were major photolabeled species after digestion of P-glycoprotein. The previously identified 6-kDa photo-labeled P-glycoprotein fragment was within the 40-kDa trypsin fragment. These data suggest that there are two photoaffinity drug-binding domains in P-glycoprotein encoded by mouse mdr1b. The C-terminal site most likely resides within or in close proximity to putative transmembrane domains 11-12.  相似文献   

9.
Cyclic AMP-dependent protein kinase catalyzes the incorporation of 3-4 mol of phosphate into the alpha subunit of rat brain sodium channels in vitro or in situ. Digestion of phosphorylated sodium channels with CNBr yielded three major phosphorylated fragments of 25, 31, and 33 kDa. These fragments were specifically immunoprecipitated with site-directed antisera establishing their location within an intracellular loop between the first and second homologous domains containing residues 448 to 630 of sodium channel RI or residues 450-639 of sodium channel RII. Five of the seven major tryptic phosphopeptides generated from intact sodium channel alpha subunits were contained in each of the 25-, 31-, and 33-kDa CNBr fragments, indicating that most cAMP-dependent phosphorylation sites are in this domain. Since CNBr digestion of sodium channels which had been metabolically labeled with 32P in intact neurons yielded the same phosphorylated fragments, the phosphorylated region we have identified is the major location of phosphorylation in situ. Only serine residues were phosphorylated by cAMP-dependent protein kinase in vitro, while approximately 16% of the phosphorylation in intact neurons was on threonine residues that must lie outside the domain we have identified. Since this domain is phosphorylated in intact neurons, our results show that it is located on the intracellular side of the plasma membrane. These results are considered with respect to models for the transmembrane orientation of the alpha subunit.  相似文献   

10.
Laminin-5 (alpha3beta3gamma2) is an important component of epithelial basement membranes. The 190-kDa alpha3 chain undergoes extracellular cleavage within the carboxyl (C) terminus consisting of five globular domains (G1 to G5), producing the mature laminin-5 with the 160-kDa alpha3 chain. To understand the physiological meaning of this processing, we isolated the C-terminal fragments of the alpha3 chain from the conditioned media of two kinds of human cell lines. The amino-terminal sequence of the fragments suggested that the cleavage occurs at Gln(1337)-Asp(1338) in the spacer region between the G3 and G4 domains. The G4-G5 fragment itself did not show significant activity, but it stimulated cell migration in the presence of a low concentration of the mature laminin-5, suggesting its regulatory role in cell migration.  相似文献   

11.
Human plasma fibronectin aggregates in solution and is thought to form fibrils on cell surfaces, perhaps by self-associating and by interacting with other components such as proteoglycans. We have localized the self-association domains by testing the ability of various fragments of fibronectin to interact with each other. Complexation between fluorescamine-labeled fragments and unlabeled fragments or whole molecules was assessed by gel filtration high-performance liquid chromatography. The fragments studied included nonoverlapping fragments that are situated on the fibronectin polypeptide chain in the following order, beginning from the amino terminus: the 29-, 50-, 120-, 35-, and 25-kDa fragments, as well as multiple-domain fragments of 72 kDa containing the 29- and 50-kDa segments, a fragment of 150 kDa containing the 120- and 35-kDa segment, a fragment of 190 kDa containing the 120- and 35-kDa segments, a fragment of 190 kDa containing the 50-, 150-, and 25-kDa segments, and a 45-kDa fragment containing the 35-kDa segment. The amino-terminal 29-kDa fragment bound to the carboxyl-terminal heparin-binding (Hep II) 35-kDa fragment as well as the 150- and 190-kDa fragments that contain the 35-kDa segment. On the other hand, carboxyl-terminal 35- and 45-kDa Hep II containing fragments bound to each other as well as to amino-terminal 29- and 72-kDa fragments and to the 190-kDa fragment. Further, the 25-kDa carboxyl-terminal fibrin-binding fragment bound the 190-kDa fragment, the only fragment containing the 25-kDa segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Clathrin in coated vesicles is linked to transmembrane receptors by adaptor protein complexes. The Golgi-associated adaptor complex HA1 is a tetramer, made up of beta', gamma, 47-kDa, and 20-kDa subunits, whereas the tetrameric plasma membrane adaptor, HA2, contains alpha, beta, 50-kDa, and 16-kDa subunits (Ahle, S., Mann, A., Eichelsbacher, U., and Ungewickell, E. (1988) EMBO J. 7, 919-929). Here we report on the structural organization of adaptor subunits as revealed by proteolytic dissection. We show that the beta' and gamma subunits of HA1 are cleaved into 60-67-kDa "trunk" and 32-44-kDa "head" fragments. Interactions between adaptor subunits involve the trunk domains only. In overall organization of their domains, the Golgi and plasma membrane adaptors are very similar. The similarity encompasses also the location of phosphorylated serine residues in the alpha a, beta, beta', and gamma subunits, which are found in the head domains in all cases. In the alpha a and beta subunits they probably occur in the proline- and glycine-rich hinge region, which connects the head to the trunk. Identical adaptor fragments were obtained by controlled digestion of clathrin-coated vesicles. Under conditions that did not affect the integrity of the clathrin heavy chain, the adaptor head fragments were always quantitatively released from coated vesicles. The release of the bulk of the adaptors occurred concomitantly with the cleavage of their beta-type subunits (beta and beta') and under buffer conditions that prevent aggregation of adaptors. These observations taken together with the results of reconstitution experiments confirm and extend previous data (Ahle, S., and Ungewickell, E. (1989) J. Biol. Chem. 264, 20089-20093) which suggested that adaptors attach to clathrin through their beta-type (beta and beta') subunits. Moreover, high affinity interaction between adaptors and clathrin requires the participation of regions from both the head and trunk domains of the beta-type subunits.  相似文献   

13.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

14.
We have investigated the molecular determinants that mediate the differences in voltage-dependent inactivation properties between rapidly inactivating (R-type) alpha(1E) and noninactivating (L-type) alpha(1C) calcium channels. When coexpressed in human embryonic kidney cells with ancillary beta(1b) and alpha(2)-delta subunits, the wild type channels exhibit dramatically different inactivation properties; the half-inactivation potential of alpha(1E) is 45 mV more negative than that observed with alpha(1C), and during a 150-ms test depolarization, alpha(1E) undergoes 65% inactivation compared with only about 15% for alpha(1C). To define the structural determinants that govern these intrinsic differences, we have created a series of chimeric calcium channel alpha(1) subunits that combine the major structural domains of the two wild type channels, and we investigated their voltage-dependent inactivation properties. Each of the four transmembrane domains significantly affected the half-inactivation potential, with domains II and III being most critical. In particular, substitution of alpha(1C) sequence in domains II or III with that of alpha(1E) resulted in 25-mV negative shifts in half-inactivation potential. Similarly, the differences in inactivation rate were predominantly governed by transmembrane domains II and III and to some extent by domain IV. Thus, voltage-dependent inactivation of alpha(1E) channels is a complex process that involves multiple structural domains and possibly a global conformational change in the channel protein.  相似文献   

15.
G protein-activated K+ channels (Kir3 or GIRK) are activated by direct binding of Gbetagamma. The binding sites of Gbetagamma in the ubiquitous GIRK1 (Kir3.1) subunit have not been unequivocally charted, and in the neuronal GIRK2 (Kir3.2) subunit the binding of Gbetagamma has not been studied. We verified and extended the map of Gbetagamma-binding sites in GIRK1 by using two approaches: direct binding of Gbetagamma to fragments of GIRK subunits (pull down), and competition of these fragments with the Galphai1 subunit for binding to Gbetagamma. We also mapped the Gbetagamma-binding sites in GIRK2. In both subunits, the N terminus binds Gbetagamma. In the C terminus, the Gbetagamma-binding sites in the two subunits are not identical; GIRK1, but not GIRK2, has a previously unrecognized Gbetagamma-interacting segments in the first half of the C terminus. The main C-terminal Gbetagamma-binding segment found in both subunits is located approximately between amino acids 320 and 409 (by GIRK1 count). Mutation of C-terminal leucines 262 or 333 in GIRK1, recognized previously as crucial for Gbetagamma regulation of the channel, and of the corresponding leucines 273 and 344 in GIRK2 dramatically altered the properties of K+ currents via GIRK1/GIRK2 channels expressed in Xenopus oocytes but did not appreciably reduce the binding of Gbetagamma to the corresponding fusion proteins, indicating that these residues are mainly important for the regulation of Gbetagamma-induced changes in channel gating rather than Gbetagamma binding.  相似文献   

16.
The postsynaptic glycine receptor purified from rat spinal cord is rapidly and specifically phosphorylated by protein kinase C. The target for phosphorylation is the strychnine-binding subunit of the receptor (molecular mass of approximately 48 kDa), which is phosphorylated on serine residues to a final stoichiometry of approximately 0.8 mol of phosphate/mol of subunit. The 48-kDa phosphoprotein was analyzed by proteolytic cleavage and peptide mapping in order to localize the site of phosphorylation within the receptor molecule. Examination of the 32P-labeled receptor fragments generated by digestion with N-chlorosuccinimide, cyanogen bromide, and endoproteinase lysine C and of the deduced amino acid sequence of the 48-kDa protein (Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. (1987) Nature 328, 215-220) indicates that the phosphorylation site is located in a region corresponding to the major intracellular loop of the predicted structure of the glycine receptor subunit and suggests serine 391 as the phosphorylated residue. In fact, a synthetic peptide corresponding to residues 384-392 of the 48-kDa subunit was specifically phosphorylated by protein kinase C. Moreover, tryptic digests of this phosphopeptide and of the phosphorylated 48-kDa subunit of the glycine receptor migrated to the same position in two-dimensional peptide mapping. Furthermore, antibodies elicited against peptide 384-392 were shown to inhibit the protein kinase C-dependent phosphorylation of the 48-kDa polypeptide. Interestingly, the relative position of the phosphorylated domain is similar to those known or proposed to be phosphorylated in other ligand-gated ion channel receptor subunits, thus suggesting further the existence of a homologous regulatory region in these receptor proteins.  相似文献   

17.
18.
The epitope of monoclonal antibody (mAb 4A), which recognizes the alpha subunit of the rod G protein, Gt, has been suggested to be both at the carboxyl terminus (Deretic, D., and Hamm, H.E. (1987) J. Biol. Chem. 262, 10839-10847) and the amino terminus (Navon, S.E., and Fung, B.K.-K. (1988) J. Biol. Chem. 263, 489-496) of the molecule. To characterize further the mAb 4A binding site on alpha t and to resolve the discrepancy between these results limited proteolytic digestion of Gt or alpha t using four proteases with different substrate specificities has been performed. Endoproteinase Arg-C, which cleaves the peptide bond at the carboxylic side of arginine residues, cleaved the majority of alpha t into two fragments of 34 and 5 kDa. The alpha t 34-kDa fragment in the holoprotein, but not alpha t-guanosine 5'-O-(3-thiotriphosphate), was converted further to a 23-kDa fragment. A small fraction of alpha t-GDP was cleaved into 23- and 15-kDa fragments. Endoproteinase Lys-C, which selectively cleaves at lysine residues, progressively removed 17 and then 8 residues from the amino terminus, forming 38- and 36-kDa fragments. Staphylococcus aureus V8 protease is known to remove 21 amino acid residues from the amino-terminal region of alpha t, with the formation of a 38-kDa fragment. L-1-Tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin cleaved alpha t progressively into fragments of known amino acid sequences (38, then 32 and 5, then 21 and 12 kDa) and a transient 34 kDa fragment. The binding of mAb 4A to proteolytic fragments was analyzed by Western blot and immunoprecipitation. The major fragments recognized by mAb 4A on Western blots were the 34- and 23-kDa fragments obtained by endoproteinase Arg-C and tryptic digestion. Under conditions that allowed sequencing of the 15- and 5-kDa fragments neither the 34- nor the 23-kDa fragments could be sequenced by Edman degradation, indicating that they contained a blocked amino terminus. The smallest fragment that retained mAb 4A binding was the 23-kDa fragment containing Met1 to Arg204. Thus the main portion of the mAb 4A antigenic site was located within this fragment, indicating that the carboxyl-terminal residues from Lys205 to Phe350 were not required for recognition by the antibody. Additionally, the antibody did not bind the 38- and 36-kDa or other fragments containing the carboxyl terminus, showing that the amino-terminal residues from Met1 to Lys17 were essential for antibody binding to alpha t.  相似文献   

19.
The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.  相似文献   

20.
Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号