首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
The absorption of triallyl isocyanurate (TAIC) to equimolar stereo blends of PLLA and PDLA (sb-PLA samples) with crosslinker (TAIC) was controlled by supercritical carbon dioxide (sc-CO2) treatment. The well-mixed sb-PLA/TAIC (sc-PLA) samples containing certain ratios of TAIC were obtained after vacuum evaporation. The sc-PLA samples were become much softer by sc-CO2 treatment. The crosslinked sc-PLA materials with different crosslinking density were prepared by irradiation treatment at different radiation doses. Gel fraction, thermal properties and mechanical properties of crosslinked samples were investigated with different sc-PLA samples irradiated at the same radiation dose of 30 kGy and sc-PLA3 irradiated at different radiation doses. The crosslinking network inhibited crystallization, and enhanced the rigidity as well as lowered brittleness of irradiated samples. Although tensile strength and Young’s modulus of sc-PLA are reduced by sc-CO2 treatment, they are much improved by radiation crosslinking at a suitable dose and the crosslinked samples become harder and tougher. The typical crosslinked obtained from sc-PLA3 irradiated at 30 kGy reveals the best thermal stability with the improved mechanical properties.  相似文献   

2.
The risk of a radiation episode has increased in the last years due to several reasons. In case of a nuclear incident, as with the use of an improvised nuclear device, determination of the radiation doses received by the victims is of utmost importance to define the appropriate medical treatment or to monitor the late effects of radiation. Dose assessment in case of accidents can be performed using commonplace materials found in the accident area. In this paper, the dosimetric properties of monosodium glutamate are investigated by electron spin resonance spectroscopy (ESR), for retrospective and accidental dosimetry. The spectroscopic parameters were optimized to achieve higher signal intensity and better signal-to-noise ratio. As a result, the lowest detectable dose was 0.1 Gy, and monosodium glutamate showed a linear dose–response curve for doses ranging from 0.1 Gy to 10 kGy. The dosimetric signal was monitored from minutes right after irradiation, until 1 year. No changes in the signal intensity were observed over this period, meaning that doses could be assessed immediately after radiation exposure and can still be reconstructed long after the accident. This property also implies that late effects due to victim’s radiation exposure could be better monitored and understood. ESR signal intensity for samples irradiated with a photon energy below 100 keV was decreased by only 27% and no dose-rate dependence was noticed. Therefore, the ability to measure doses as low as 0.1 Gy, the high stability of the dosimetric signal, as well as independence on dose rate, tissue equivalence, low-cost, and wide commercial availability make monosodium glutamate a very good dosimetric material not only for retrospective and accidental but also for medical dosimetry.  相似文献   

3.
Qi M  Wu G  Chen S  Liu Y 《Radiation research》2007,167(5):508-514
The applications of room-temperature ionic liquids in the nuclear fuel cycle and radiation chemistry depend on a comprehensive knowledge of their stability and chemical properties under radiation conditions. In this work, the effect of gamma radiation on pure ionic liquid [bmim][PF6] was investigated in detail. The radiolysis of [bmim][PF6] leads to an increase of UV-vis absorbance and a decrease of fluorescence intensity with increasing radiation dose. Raman spectra proved that gamma radiation induced significant chemical scission of the n-butyl group (e.g. C-H and C-C scission) and damage to the [PF6]- anion. When the irradiated [bmim][PF6] samples were cooled, two crystal structures were found to coexist, and they suffered a continuous destruction under irradiation; their dose dependence, however, was different.  相似文献   

4.
Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.  相似文献   

5.
JA Han  ST Lim 《Carbohydrate polymers》2012,90(4):1480-1485
Octenylsuccinylated (OS) starches from waxy rice or high-amylose rice (28.1% amylose) (DS 0.023 and 0.025, respectively) were gamma-irradiated at 10, 30, or 50kGy and their pasting and thermal properties, crystallinity, and emulsification property were examined. When the OS starches were irradiated, the degrees of substitution gradually decreased as irradiation dose increased. A significant decrease in pasting viscosity was observed with an increase in irradiation dose, indicating the presence of chain degradation induced by the radiation. The melting temperature and enthalpy determined by differential scanning calorimetry increased slightly by irradiating at 10 or 30kGy. Little change in crystallinity was observed in the X-ray diffraction analysis for the OS high-amylose rice starch regardless of irradiation doses, whereas a decrease in crystallinity was observed with the OS waxy starch irradiated at 50kGy. Chain degradation induced by irradiation occurred mainly in the amorphous regions, but some loss of crystallinity occurred when the irradiation was excessive. The OS starches showed greater emulsion capacity and stability than the native counterparts due to their amphipathic nature. The irradiation further improved the emulsification properties of OS starches. The irradiation at 10kGy was optimal, and treating at higher doses decreased the emulsion capacity and stability of the OS starches.  相似文献   

6.
Studies of ultraviolet and circular dichroism spectra of aqueous solutions of calf thymus (CT) DNA confirm the tendency of DNA to change conformation at low ionic strength. The qualitative shape and transition width of 260 nm melting curves below 1 mM NaCl differed significantly from those previously published for DNA solutions containing 1 mM NaCl and above. Neutral aqueous solutions of CT DNA at low ionic strengths (0.1 mM-10 mM NaCl) were irradiated with low doses of gamma-rays. The melting temperature, Tm, of irradiated DNA samples increased below 1 mM NaCl suggesting interstrand crosslinking of the denatured DNA or formation of regions of more thermally stable DNA conformation. The magnitudes of these radiation responses were found to be a function of the time elapsed between salt concentration changes and irradiation as well as time after irradiation. These results are consistent with the hypothesis that the purine and pyrimidine base chromophores in double stranded DNA are sheltered from radical attack by the sugar phosphate backbone. Low dose radiation studies (0.8-8.0 Gy) of CT DNA in 1 mM NaCl and below showed a split dose and dose rate dependence for the sample melting curves.  相似文献   

7.

This study aimed to investigate the thermoluminescent properties of ZrO2:Mg irradiated with a 6 MV X-ray beam and its potential application in radiotherapy dosimetry. ZrO2 powder was synthesized using the sol–gel method and Mg was used as a dopant. Irradiations were performed with ZrO2:Mg chips located at the center of a 10 × 10 cm2 radiation field at a source surface distance of 100 cm, below a stack of solid water slabs, at the depth of maximum absorbed dose. The investigated characteristics of the material included linearity with radiation dose, reproducibility, accuracy, sensitivity and fading. Regarding the intrinsic difference of the samples, the glow curves of the investigated ZrO2:Mg chips exposed to 1 Gy of 6 MV X-rays exhibited three or four peaks. The ZrO2:Mg samples showed a 47% fading at 24 h after irradiation, and the reproducibility of the thermoluminescence reading of ZrO2:Mg for equal irradiation conditions was ± 21%. The thermoluminescence response of the investigated ZrO2:Mg samples to various absorbed doses from 0.5 to 2.5 Gy showed a gentle increase of the thermoluminescence intensity with increasing absorbed dose. The obtained results show that ZrO2:Mg is not an appropriate candidate for X-ray photons in radiotherapy, due to low thermoluminescence peak temperature, low reproducibility, low sensitivity to various absorbed doses and significant fading.

  相似文献   

8.
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery. Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis. Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities. This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.  相似文献   

9.
The thermoluminescence (TL) characterizations of γ‐irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different γ‐irradiation doses. Peak TL intensities varied sublinearly with γ‐ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of γ‐ray dose. TL peak height was found to be dependant on the concentration (0.05–0.5 mol%) of added Dy in the host. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The combined effect of gamma radiation and both hot water and sodium carbonate on physiological decay and chemical constituents of stored mandarin fruits was investigated in this work. In this consideration, the studied fruits were gamma irradiated at doses of 0, 0.3, 0.6, 1.2 and 2.4 KGy. Then, the irradiated and non-irradiated fruits were treated either by hot water or sodium bicarbonate to examine their capacity to give a further maintenance and increasing shelf life or storage periods of mandarin. Treated and non-treated fruit samples were taken at intervals of 10 days and up to 60 days. Physiological decay, total acidity, vitamin C, total sugars and TSS were investigated during the different intervals. Gamma radiation treatments showed a promising effect for maintaining the studied fruits and retarding the development of decay. On the other hand, applying both hot water and sodium bicarbonate as a further combined treatments induced a powerful effect on delaying decay development, keeping the chemical constituents near to the normal level and in turn maximizing shelf life and storage periods of the fruits under investigation.  相似文献   

11.
Fish skin is very vulnerable to damage from physical and chemical pollutants because it is in direct contact with the aquatic environment. In this study, the effect of gamma radiation on primary cultures of rainbow trout skin was investigated. Primary cultures containing two cell types, epidermal cells and goblet mucous cells, were exposed to doses ranging from 0.5-15 Gy 60Co gamma radiation. Expression of PCNA, c-myc and BCL2 was investigated as well as growth and levels of apoptosis and necrosis. Morphological and functional changes were also studied. The irradiated cultures showed evidence of a dose-dependent increase in necrosis and enhanced proliferation as well as morphological damage. In addition, mucous cell area was found to decrease significantly after irradiation. The study shows the value of these primary cultures as in vitro models for studying radiation effects. They provide an effective alternative to whole-animal exposures for radiation risk assessment.  相似文献   

12.
Undercooked and raw meat has been linked to outbreaks of hemorrhagic diarrhea due to the presence of Escherichia coli O157:H7; therefore, treatment with ionizing radiation was investigated as a potential method for the elimination of this organism. Response-surface methods were used to study the effects of irradiation dose (0 to 2.0 kGy), temperature (-20 to +20 degrees C), and atmosphere (air and vacuum) on E. coli O157:H7 in mechanically deboned chicken meat. Differences in irradiation dose and temperature significantly affected the results. Ninety percent of the viable E. coli in chicken meat was eliminated by doses of 0.27 kGy at +5 degrees C and 0.42 kGy at -5 degrees C. Small, but significant, differences in radiation resistance by E. coli were found when finely ground lean beef rather than chicken was the substrate. Unlike nonirradiated samples, no measurable verotoxin was found in finely ground lean beef which had been inoculated with 10(4.8) CFU of E. coli O157:H7 per g, irradiated at a minimum dose of 1.5 kGy, and temperature abused at 35 degrees C for 20 h. Irradiation is an effective method to control this food-borne pathogen.  相似文献   

13.
The present work aims at studying the effect of gamma radiation on the hard dental tissues. Eighty adult male albino rats with weights of about 250 g were used. The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy whole-body gamma doses. The effects on hard dental tissue samples were investigated after 48 h in histological and ground sections using light microscopy. Areas of acid phosphatase activity were detected using tartrate-resistant acid phosphatase (TRAP) stains. Observation of histological sections revealed disturbance in predentin thickness and odontoblastic layer as the irradiation dose increased. In cementum, widened cementocytes lacunae were occasionally detected even with low irradiated doses. On the other hand, relatively homogenous enamel was detected with darkened areas in enamel surface at doses over than 0.5 Gy. TRAP-positive cells were detected on the surface of the dentin of irradiated groups as well as cementum surface. Minimal detectable changes were observed in ground sections.  相似文献   

14.
The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anaerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria.  相似文献   

15.
Day-old guinea-pigs were given a non-paralysing dose of 10 Gy X-rays to the lumbar spinal cord. One year later there was no evidence of any residual radiation damage as the dose required to produce paralysis was the same for these animals as for others not previously irradiated. When given a single dose only, guinea-pigs irradiated when 1 day old became paralysed after lower doses and with shorter latencies than those irradiated at 1 year. When irradiated at 30 days of age, the dose inducing paralysis was the same as at 1 year of age, but the latency period was shorter and similar to guinea-pigs irradiated at 1 day old. Thus at 30 days of age, adult radiotolerance had been acquired but latencies were still as short as in neonates. Whatever the age at irradiation, changes in latency for paralysis were closely related to changes in histopathological lesions in the cord and both were related to dose. White matter necrosis always occurred after higher doses and after shorter latencies than diffuse vacuolar demyelination.  相似文献   

16.
The current study investigated the thermoluminescence (TL) properties of milky quartz samples collected from the Central Eastern Desert, Egypt. The crystallinity and the elemental concentrations of the milky quartz samples were examined using X‐ray diffraction and an atomic absorption spectrometer. Samples were irradiated using a gamma source at different doses from 250 mGy up to 2 kGy. For annealing, the samples were heated at 400°C for 1 h, followed by slow cooling. Kinetic analyses for the TL glow curves were performed using new designed TL deconvolution software. The glow curves were composed of six overlapped trapping sites at 428, 468, 498, 545, 586, and 639 K. The samples also displayed a linear dose–response from 0.25 Gy up to 20 Gy and a supralinear response from 20 Gy up to 200 Gy. The samples exhibited very low sensitivity for gamma radiation compared with LiF and the minimum detectable dose was 545 μGy. From its linear nature, it was observed that the sensitivity had changed. This study recommends starting measurements of these milky quartz samples after 4 days to give established measurements.  相似文献   

17.
The response of higher plants to ionising radiation depends on factors related to both radiation properties and plant features including species, cultivar, age, and structural complexity of the target organ. Adult plants of dwarf tomato were irradiated with different doses of X-rays to investigate possible variations in leaf morpho-anatomical traits, photosynthetic efficiency, and genomic DNA. In order to assess if and how responses depend on leaf developmental stage, we analysed two types of leaves; nearly mature leaves (L1) and actively developing leaves (L2), whose lamina size corresponded to 70 and 25 %, respectively, of the lamina size of the fully expanded leaves. The results show that the X-rays prevented full lamina expansion of the L2 leaves at all doses and induced early death of tissue of plants irradiated with doses higher than 20 Gy. Most anatomical modifications were not clearly dose-dependent and the radiation-induced increase in phenolic compounds was irrespective of dose. At high doses of X-rays (50 and 100 Gy), photochemical efficiency decreased significantly in both leaf types, whereas total chlorophyll content significantly decreased only in the L2 leaves. The random amplification of polymorphic DNA data show that the X-rays induced mutagenic effects in the L2 leaves even at low doses despite the absence of severe phenotypic alterations. Genetic structure found in the population of samples corroborates the results of anatomical and eco-physiological analyses: the 20 Gy dose seems to mark the threshold dose above which genetic alterations, structural anomalies, and perturbations in the photosynthetic apparatus become significant, especially in the actively expanding leaves.  相似文献   

18.
The conformational changes and aggregation process of beta-lactoglobulin (beta-LG) subjected to gamma irradiation are presented. Beta-LG in solutions of different protein concentrations (3 and 10 mg/ml) and in solid state with different water activities (a(w)) (0.22; 0.53; 0.74) was irradiated using a Cobalt-60 radiation source at dose level of 1-50 kGy. Small-angle X-ray scattering (SAXS) was used to study the conformational changes of beta-LG due to the irradiation treatment. The irradiated protein was also examined by high performance size exclusion chromatography (HPSEC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing and reducing conditions and fluorescence. SAXS analysis showed that the structural conformation of irradiated beta-LG in solid state at different a(w) and dose level was essentially the same as the nonirradiated beta-LG. The scattering data also showed that the irradiation of beta-LG in solution promoted the formation of oligomers. Interestingly, from the data analysis and model building, it could be shown that the formed oligomers are linear molecules, built by linear combinations of beta-LG dimers (tetramers, hexamers, etc). The formation of oligomers was also evidenced by SDS-PAGE analysis and HPSEC chromatograms, in which products with higher molecular mass than that of the dimeric beta-LG were detected. Formation of intermolecular cross-linking between tyrosyl radicals are proposed to be at least partially responsible for this occurrence. From the results it could be shown that the samples irradiated in solution presented some conformational changes under gamma irradiation, resulting in well ordered oligomers and aggregates formed by cross-linking of beta-LG dimers subunits, while the samples irradiated in the solid state were not modified.  相似文献   

19.
In this study, Iranian gum tragacanth (GT) exudates from Astragalus fluccosus (AFG) and Astragalus gossypinus (AGG) were irradiated at 3, 7, 10 and 15 kGy. Fourier transform infrared spectroscopy (FTIR) data showed that irradiation did not induce changes in the chemical structure of either type of gum. Although particle size distribution and both steady shear and dynamic rheological properties were considerably affected by the irradiation process, the magnitude of the effect of irradiation on each of the rheological and size variables was different for the hydrocolloids. For instance, for AGG, increasing the irradiation dose from 3 to 10 kGy, the d(0.5) and D[3,2] values were reduced by one-sixth to one-eighth fold. Colour measurement revealed that the radiation process led to an increase in the yellow index and b* values for both types of GT in powder form, but it was more pronounced for AGG samples. Irradiation led to an approximate 13-fold increase in redness in AFG. Surface and shape changes of the gum crystals were studied by scanning electron microscope (SEM) and a smoother surface for irradiated samples was detected. The notable changes in functional properties of each variety of irradiated gum should be taken into consideration before using the radiation technology as a commercial tool for sterilisation.  相似文献   

20.
Horn S  Barnard S  Rothkamm K 《PloS one》2011,6(9):e25113
Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号