首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Flow cytometry was employed to determine the ploidy level of Vitis vinifera L. somatic embryo-derived plants obtained from anther culture. Only one among the 41 analysed plants (2.4%) presented somaclonal variation (tetraploidy); the other plants were diploid. No significant differences (P≤0.05) were detected between diploid and parental field plants. No haploid or aneuploid plants were observed. The nuclear DNA content of nine V. vinifera cultivars was also estimated using flow cytometry. A non-significant variation was found among the cultivars, with DNA content ranging from 1.17 pg/2C (cv. ‘Tinta Barroca’ and ‘Viosinho’) to 1.26 pg/2C (cv. ‘Cabernet Sauvignon’). These results and previous studies on other Vitis species suggest that Vitis genome is stable with regard to nuclear DNA content.  相似文献   

2.
The DNA relative content in nuclei from several Solanum species, which were used as partners for somatic hybridization, were determined using a flow cytometry method. The nuclei were isolated mechanically or via protoplasts from leaves of in vitro grown plants. In the case of S. nigrum as well as S. tuberosum cv. Bzura and dihaploid clone H8105, the nuclei were also obtained from suspension cultured cells by lysis of protoplasts. The source and the method of nuclei isolation affected the pattern of nuclear DNA in the genotypes studied. The mesophyll nuclei showed two distinct peaks on the DNA histograms, whereas the DNA peaks produced by cell suspension nuclei were broad and less distinct. The DNA content in the nuclei, calculated from the DNA histograms of the samples and a DNA standard historgam (Trout Red Blood Cells, having DNA content of 5.05 pg per nucleus), were much lower in mesophyll nuclei than in those obtained from the cell suspension for the same genotypes. The results are discussed in respect of the genetic instability of Solanum genotypes. The usefulness of a flow cytometry approach in somatic hybridization research is also discussed.  相似文献   

3.
The gene pool of Brassica oleracea was enriched via intergeneric somatic hybridization between B. oleracea (2n = 18) and Matthiola incana (2n = 14). One hundred and eighteen plants were obtained from 96 calli. Only four plants (H1, H2, H3 and H4) showed an intermediate phenotype from the parents; among these, H1 and H3 arose from the same callus. Random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and cytological analyses confirmed that H1 and H3 were hybrids. The nuclear DNA content of the regenerated plants was determined by flow cytometry. More than half of the plants contained a nuclear DNA content of 1.3 to 3.9 pg/cell, which was higher than the content of B. oleracea but lower than that of M. incana. H1 contained 4.89 ± 0.02 pg of DNA per cell, while H3 nuclear DNA content was estimated at 4.87 ± 0.06 pg/cell. Cytological study of the root-tip cells revealed that the majority of the H1 and H3 hybrid cells contained 28 chromosomes.  相似文献   

4.
 F1 hybrids were obtained between two coffee species with the same chromosome number (2n=22) but with different nuclear DNA contents [C. pseudozanguebariae (PSE) 2C=1.13 pg and C. liberica var ‘dewevrei’ (DEW) 2C=1.42 pg]. G2 hybrids were obtained by open-pollination of the F1 hybrids. Genomic in situ hybridisation (GISH) and flow cytometry were used on six F1 hybrids and seven G2 hybrids to determine their parental chromosomic contribution and their nuclear DNA content (qDNA), respectively. GISH efficiently identified chromosomes from both species. F1 hybrids had a qDNA intermediate between that of the parental species and contained the expected 11 chromosomes from each species. There was a linear relationship between the number of PSE chromosomes and the nuclear DNA content, which indicates that flow cytometry can be used to give a rough estimate of the parental chromosomic contribution in G2 hybrids. Received: 1 August 1997/Accepted: 25 August 1997  相似文献   

5.
Nuclear DNA content (2C) is used as a new criterion to investigate nearly all species of the genus Nerine Herb. The species have the same chromosome number (2n = 2x = 22), with the exception of three triploid plants found. The nuclear DNA content of the diploids, as measured by flow cytometry with propidium iodide, is demonstrated to range from 18.0–35.3 pg. This implies that the largest genome contains roughly 2 × 1010 more base pairs than the smallest. The species, arranged according to increasing genome size, fell apart in three groups if growth cycle and leaf width were also considered. A narrow-leafed, evergreen group with a DNA content between 18.0 and 24.6 pg contains thirteen species, a broad-leaved winter growing group with four species has a DNA content from 25.3–26.2 pg and a broad-leafed summer growing group has a DNA content of 26.8–35.3 pg and contains six species. If the presence of filament appendages and hairiness of the pedicels were also considered, the thirteen evergreen species could be further divided into a group without filament appendages or hairy pedicels with a DNA content of 18.0–18.7 pg. A second group without filament appendages but with hairy pedicels had a DNA content of 19.7–22.3 pg. And a third group with both filament appendages and hairy pedicels had a DNA content of 22.0–24.6 pg. The exception is N. marincowitzii that, despite a low DNA content and narrow leaves is summer growing. The broad-leafed group is further characterised by the absence of filament appendages and the absence of strongly hairy pedicels. The exception here is N. pusilla that, despite a high DNA content, has narrow leaves and minutely hairy pedicels. Nuclear DNA content as measured by flow cytometry is shown to be relevant to throw new light on the relationships between Nerine species.  相似文献   

6.
Karyotype studies on 20 taxa of gymnosperms endemic to New Zealand show a wide diversity of chromosome number and form. Fluorochrome banding with DAPI and CMA reveals a depauperate pattern of bands with CMA and no reliable banding with DAPI. Characteristically one pair of chromosomes shows a prominent CMA band, which may or may not be associated with a secondary constriction. A band size polymorphism was observed in all plants ofDacrycarpus dacrydioides, irrespective of the sex of the plant. Measurements of genome size by flow cytometry show a range of values from 12.3 pg to 40.0 pg DNA per 2C nucleus. Intraspecific variation in genome size was observed inManoao colensoi.  相似文献   

7.
Nuclear DNA content (2C) is used as a new criterion to investigate all species of the genus Gasteria Duval including the three recently described species Gasteria polita van Jaarsv., G. pendulifolia van Jaarsv. and G. glauca van Jaarsv.. The 122 accessions investigated have the same chromosome number (2n=2x=14), with exception of three tetraploid plants found. The nuclear DNA content of the diploids, as measured by flow cytometry with Propidium Iodide, is demonstrated to range from 32.8–43.2 pg. This implies that the largest genome contains roughly 1010 more base pairs than the smallest. Based on DNA content the species could be divided in five groups: G. rawlinsonii Oberm. with 32.8 pg, 13 mostly inland species with 34.3–36.0 pg, five coastal species with 36.5–39.0 pg and Gasteria batesiana Rowley with 43.2 pg. The thirteen species with 34.3–36.0 pg could be divided further, in a group of eight species occupying mainly very restricted areas with 34.3–35.1 pg and a second group of five species with 35.2–36.0 pg mainly occupying large areas. These five groups did not coincide very well with the two sections and four series of Gasteria based on a cladistic analysis by van Jaarsveld et al. (1994). Based on its long leafy branches, location in the centre of Gasteria species distribution and its by far lowest DNA content, G. rawlinsonii might be the most primitive member of the genus. Nuclear DNA content as measured by flow cytometry is shown to be relevant to provide additional information on the relationships between Gasteria species.  相似文献   

8.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

9.
Nuclei were isolated from leaf tissue of differentCapsicum species and the relative fluorescence intensity was measured by flow cytometry after propidium iodide staining.Pisum sativum nuclei with known nuclear genome size (9.07 pg) were used as internal standard to determine nuclear DNA content of the samples in absolute units. The 2C DNA contents ranged between 7.65 pg inC. annuum and 9.72 pg inC. pubescens, and the general mean of the genus was 8.42 pg. These values correspond, respectively, to 1C genome size of 3.691 (C. annuum), 4.690 (C. pubescens) and 4.063 (general mean) Mbp. In general, white-flowered species proved to have less DNA, with the exception ofC. praetermissum, which displayed a 2C DNA content of 9.23 pg. It was possible to divide the studied species into three main groups according to their DNA content, and demonstrate differences in DNA content within two of the three species complexes established on the basis of morphological traits.  相似文献   

10.
Estimation of nuclear DNA content of various bamboo and rattan species   总被引:1,自引:0,他引:1  
We determined the nuclear DNA content (genome size) of over 35 accessions each of bamboo and rattan species from Southeast Asia. The 2C DNA per nucleus was quantified by flow cytometry. The fluorescence of nuclei isolated from the leaves and stained with propidium iodide was measured. The genome size of the bamboo species examined was between 2.5 and 5.9 pg DNA per 2C nucleus. The genome size of the rattan species examined ranged from 1.8 to 10.5 pg DNA per 2C nucleus. This information will be useful for scientists working in diverse areas of plant biology such as biotechnology, biodiversity, genome analysis, plant breeding, physiology and molecular biology. Such data may be utilized to attempt to correlate the genome size with the ploidy status of bamboo species in cases where ploidy status has been reported.  相似文献   

11.
A wild-type (WT) strain of the moss Physcomitrella patens (Hedw.) B.S.G., two mutants derived from it (PC22 and P24), and a somatic hybrid, PC22(+)P24, were analysed. Staining of metaphases revealed 54±2 chromosomes in the somatic hybrid and 27 chromosomes in the wild type and the two mutants. Using flow cytometry (FCM), DNA contents were calculated to be 0.6 pg (WT, PC22), 1.2 pg (P24), and 1.6 pg (PC22(+)P24) per nucleus, respectively. Southern hybridization provided evidence for at least one family of highly repetitive DNA and, furthermore, revealed different amounts of repetitive DNA in the four genotypes. However, these sequences cannot account for the 100% increase in the nuclear DNA amount in mutant P24, relative to wild type. In FCM analyses every moss geno-type generated just one single peak of fluorescence, indicating an arrest in the cell cycle during the daytime. Thermal denaturation of wild-type DNA revealed a G+C content of 34.6% for total DNA and 38.6% for plastid DNA. A cDNA library of 1.2 × 106 independent clones was established, from which sequences homologous to cab and rbcS, respectively, were isolated. These genes show significant homologies to those of higher plants, and, likewise, comprise multigene families. No restriction fragment length polymorphisms could be detected between the four moss genotypes using these cDNA probes.This article is based in part on doctoral studies of M.F. and MW at the University of Hamburg, Faculty of Biology  相似文献   

12.
Nuclear DNA content of some important plant species   总被引:69,自引:0,他引:69  
Nuclear DNA contents of more than 100 important plant species were measured by flow cytometry of isolated nuclei stained with propidium iodide.Arabidopsis exhibits developmentally regulated multiploidy and has a 2C nuclear DNA content of 0.30 pg (145 Mbp/1C), twice the value usually cited. The 2C value for rice is only about three times that ofArabidopsis. Tomato has a 2C value of about 2.0 pg, larger than commonly cited. This survey identified several horticultural crops in a variety of families with genomes only two or three times as large asArabidopsis; these include several fruit trees (a pricot, cherry, mango, orange, papaya, and peach). The small genome sizes of rice and the horticultural plants should facilitate molecular studies of these crops.  相似文献   

13.
Genome size (Cx-value) was applied as a new criterion to investigate the relationships within the genus Galanthus L. (Amaryllidaceae). More than 150 samples representing all species, from wild and cultivated material, were investigated. Most species of Galanthus have the same basic chromosome number (2n=2x=24). However, the somatic nuclear DNA contents (2C), as measured by flow cytometry with propidium iodide was shown to range from 48.6 to 90.4 pg for the diploids. This implies that the largest genome contains roughly 4 × 1010 more base pairs than the smallest and has chromosomes that are nearly twice as large. On this basis we assumed that nuclear DNA content as measured using flow cytometry may be used to produce easily obtainable systematic data. Triploidy in G. rizehensis and G. alpinus var. bortkewitschianus, tetraploidy in G. elwesii and hexaploidy in G. lagodechianus were confirmed by flow cytometry. In addition, as well as a number of polyploid cultivars, triploids were also found in G. nivalis and tetraploids and hexaploids in G. transcaucasicus and G. elwesii, respectively. DNA content confirmed the close relationships in some species pairs, including: G. nivalis and G. reginae-olgae, G. krasnovii and G. platyphyllus, G. gracilis and G. elwesii. Further investigation of the taxonomic status of these pairs is suggested. As a rapid diagnostic tool, applicable even in the case of dormant bulbs or sterile plants, flow cytometry has applications for conservation and in particular the monitoring of the trade in bulbous plants.  相似文献   

14.
An improved procedure is reported for determining DNA amounts of plant nuclei. Nuclei stained with propidium iodide, isolated from chopped plant leaves, were passed through an Ortho Cytofluorograph with a Lexel model 95 argon laser (514 nm) and the fluorescence measured, integrated, and recorded using an Ortho 2140 Data Acquisition computer. All nuclear samples were mixed with nuclei of Sultan barley (2C DNA content = 11.12 pg [picogram]) as an internal standard. DNA contents of ten plant species, ranging from 2C = 1.7 pg to 36.1 pg measured by flow cytometry, correlated strongly (r = 0.99, slope = + 1.00) with DNA contents determined from Feulgen-stained nuclei of the same species using microspectrophotometry. The flow cytometric procedures were sufficiently sensitive to detect differences in DNA content between inbred lines of corn and their F1 hybrids. Our results obtained with improved procedures, specifically using propidium iodide as a fluorochrome and plant nuclei instead of chicken erythrocytes as an internal standard, demonstrate that laser flow cytometry can be a precise, rapid, and reliable method for determining nuclear DNA content of plants.  相似文献   

15.
Nuclear genome size of conifers as measured by flow cytometry with propidium iodide was investigated, striving to collect at least a single species from each genus. 64 out of 67 genera and 172 species were measured. Of the 67 genera, 21 are reported here for the first time and the same is true for 76 species. This nearly doubles the number of measured genera and adds 50% to the number of analyzed species. Conifers have chromosome numbers in the range of n = (7)10–12(19). However, the nuclear DNA content (2C‐value) is shown here to range from 8.3 to 71.6 picogram. The largest genome contains roughly 6 × 1010 more base pairs than the smallest genome. Genome sizes are evaluated and compared with available taxonomic treatments. For the mainly (sub)tropical Podocarpaceae small genome sizes were found with a 2C‐value of only 8–28 pg, with 13.5 pg on average. For the Taxaceae 2C‐values from 23–60 pg were determined. Not surprisingly, the genus Pinus with 97 species (39 species measured here) has a broad range with 2C = 38–72 pg. A factor of 2 difference is also found in the Cupressaceae (136 species) with nuclear DNA contents in the range 18–35 pg. Apart from the allohexaploid Sequoia, ploidy plays a role only in Juniperus and some new polyploids are found. The data on genome size support conclusions on phylogenetic relationships obtained by DNA sequencing. Flow cytometry is applicable even to young plants or seeds for the monitoring of trade in endangered species.  相似文献   

16.
Summary Mesophyll cell nuclei isolated from leaves of Pennisetum purpureum were analysed by flow cytometry to determine the nuclear DNA content and the percentage of cells in different phases of the cell cycle. Samples taken from base, middle and tip regions of leaves 2 to 8 (leaf 1, which was adjacent to the meristem, was too small to sample) showed no significant differences in the amount of DNA per G1 nucleus due to either age or position. The average amount of DNA per G1 nucleus was 5.78 pg. Although the majority of cells for each sample were in G1, samples taken from older leaves had higher percentages of cells in G2 and S phases. More specifically, base and middle regions of older leaves had a higher percentage of cells in G2 than all three positions in younger leaves. Electrophoretic analysis of nuclear DNA from leaves 2 to 7 showed no evidence of degradation or difference in fragment size for any sample or position. This study was compared to previous work on the relationship between leaf age and embryogenic competence in Pennisetum purpureum. The results suggest that changes in the cell cycle, and/or a loss or fragmentation of the nuclear DNA, are not responsible for loss of embryogenic competence in mature leaf tissue.  相似文献   

17.
Genome size has been estimated by flow cytometry in 14 populations belonging to eight taxa (seven species, one of them with two varieties) of the genus Tripleurospermum. 2C nuclear DNA amounts range from 4.87 to 9.22 pg, and nuclear DNA amounts per basic chromosome set from 1.99 to 2.75 pg. Statistically significant differences depending on ploidy level, life cycle or environmental factors such as altitude have been found. Also, genome size is positively correlated with total karyotype length. The presence of rhizome is related to nuclear DNA content in these species.This work was supported by project BOS2001-3041-C02-01 of the Spanish government, and one of the authors (S.G.) received a predoctoral grant from the Spanish government.  相似文献   

18.
The nuclear DNA content was analyzed in Vitis species, hybrid cultivars, and genera of the Vitaceae using flow cytometry. Significant variation was found among Vitis species, hybrids, and other genera of the Vitaceae (Ampelopsis and Parthenocissus). DNA content was estimated to range from 0.98 to 1.05 pg/2C within V. labrusca (ns) and 0.86 to 1.00 pg/2C within V. vinifera (ns). Genotypes from Vitis and Parthenocissus were similar in nuclear DNA content (approximately 1.00 pg/2C) whereas they differed significantly from Ampelopsis (1.39 pg/2C). No correlation between DNA content and the center of origin of genotypes of the Vitaceae was noted. Based on the present study, the Vitis genome size is 475 Mbp, 96% of which is non-coding. Knowledge of DNA content is useful in order to understand the complexity of the Vitis genome and to establish a relationship between the genetic and physical map for map-based cloning.  相似文献   

19.
Nuclear 1C DNA content in haploid megagametophyte tissue of 18 North American and one exotic Pinus species was determined using scanning microspectrophotometry. The nuclear DNA content in root meristematic cells of Zea mays L. ssp. mays, inbred line Va35 (4C = 10.31 pg) was used as a standard. DNA content measured by microspectrophotometry was verified using laser flow cytometry with two additional standards, Hordeum vulgare cv. Sultan (2C = 11.12 pg) and P. eldarica (2C = 47.30 pg). DNA values obtained by both methods were significantly correlated (r = 0.987). The 1C nuclear DNA content ranged from 21 pg to 31 pg. The ratio of DNA content in embryo tissue of P. eldarica to that in megagametophyte tissue was 1.72 by scanning microspectrophotometry and 1.74 by laser flow cytometry. To date, this is the most comprehensive data set available for North American Pinus species. Relationships between genome size of 18 North American Pinus species and climatic factors and indices of growth were investigated using regression and correlation analyses. Positive correlations were observed between nuclear DNA content and growth indices, minimum seed-bearing age, and seed dimensions. Strong negative correlations were observed between nuclear DNA content and two climatic factors, the lowest mean annual and monthly precipitation (excluding January) and the highest mean monthly spring air temperature. These correlations suggest that the large genome size and its variation in Pinus are adapted responses to the habitats of these species.  相似文献   

20.
Summary The purpose of this study was to determine simply and accurately ploidy levels as estimated by changes in nuclear DNA content of wheat (Triticum aestivum L.) plants regenerated from microspore-derived embryos. Using flow cytometry, the nuclear DNA content of green (83) and albino (222) plants derived using anther culture of ‘Bobwhite’ and ‘Pavon 76’, and of their reciprocal F1 hydrids was estimated. The average DNA concent of the Bobwhite and Pavon 76 standards was 32.46 and 31.28 per nucleus, respectively. Microspore-derived haploid (3X), doubled-haploid (6X), nanoploid (9X), and dodecaploid (12X) plants contained on average 15.44, 30.56, 45.57, and 60.27 pg of DNA, respectively, at a ratio of 1∶1.98∶2.99∶3.90. The frequency of haploids (43.6%) was similar to that of doubled haploids (43.0%), and much larger than the frequency of endopolyploids [nanoploid (1.3%) and dodecaploid (1.0%)] and various aneuploids (11.1%). In terms of genetic stability, green plants had less chromosomal variation than albino plants. The procedure is suitable for rapid determination of the ploidy levels of wheat microspore-derived plants. The knowledge about DNA content or genome size of plants obtained here provides useful information to plant breeders and geneticists interested in using anther culture. Formerly of the Department of Agronomy, University of Nebraska, Lincoln. NE 68583-0915. Formerly of the Center for Biotechnology, University of Nebraska, Lincoln, NE 68588.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号