首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重金属对油菜种子萌发和胚根生长的影响   总被引:5,自引:0,他引:5  
分析了Hg2 、Cd2 、Ni2 、Co2 、Zn2 5种重金属离子对油菜种子萌发和胚根伸长的影响,以及金属离子K 、Mg2 和Ca2 与重金属的交互作用。结果表明:(1)重金属对油菜种子萌发的抑制作用依次为Hg2 >Cd2 和Co2 >Ni2 >Zn2 ,而对胚根生长的毒害作用依次为Hg2 >Cd2 >Co2 >Ni2 >Zn2 。(2)萌发率为40%以上时,K 和Ca2 可以提高Ni2 、Zn2 和Co2 胁迫下油菜种子的萌发率,却进一步降低了Hg2 、Cd2 胁迫下种子的萌发;Mg2 可以提高Ni2 、Zn2 、Cd2 和Co2 胁迫下种子的萌发率,但对Hg2 毒害却没有缓解。(3)胚根伸长率达到60%以上时,K 和Mg2 增强了Ni2 、Hg2 、Cd2 和Co2 对胚根生长的抑制,而Ca2 则缓解了Zn2 、Ni2 和Co2 对胚根生长的抑制作用。研究结果对于重金属复合污染土壤中植物种子的萌发和定植具有理论和实践意义。  相似文献   

2.
Environmental pollullon is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, In particular cadmium stress, is a primary goal of plant-blotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.  相似文献   

3.
How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression   总被引:8,自引:0,他引:8  
Environmental pollullon is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, In particular cadmium stress, is a primary goal of plant-blotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.  相似文献   

4.
我国土壤重金属污染问题日益突出.作为一种绿色、安全的生物修复技术,植物修复技术备受关注.根系分泌物作为植物-土壤-微生物三者物质交换与信息传递的重要载体,是植物响应外界胁迫的重要生理生态指征,在植物修复过程中发挥关键作用.研究表明,根系分泌物能够有效调控根际微环境,提升植物抗逆能力,影响重金属在根际微域中的环境行为.传...  相似文献   

5.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

6.
高等植物重金属耐性与超积累特性及其分子机理研究   总被引:50,自引:0,他引:50       下载免费PDF全文
由于重金属污染日益严重, 重金属在土壤物系统中的行为引起了人们的高度重视。高等植物对重金 属的耐性与积累性, 已经成为污染生态学研究的热点。近年来, 由于分子生态学等学科的发展, 有关植物对重金属的解毒和耐性机理、重金属离子富集机制的研究取得了较大进展。高等植物对重金属的耐性和积累在种间和基因型之间存在很大差异。根系是重金 属等土壤污染物进入植物的门户。根系分泌物改变重金属的生物有效性和毒性, 并在植物吸收重金属的过程中发挥重要作用。土壤中的大部分重金属离子都是通过金属转运蛋白进入根细胞, 并在植物体内进一步转运至液泡贮存。在重金属胁迫条件下植物螯合肽 (PC) 的合成是植物对胁迫的一种适应性反应。耐性基因型合成较多的PC, 谷胱甘肽 (GSH) 是合成PC的前体, 重金属与PC螯合并转移至液泡中贮存, 从而达到解毒效果。金属硫蛋白 (MTs) 与PC一样, 可以与重金属离子螯合, 从而降低重金属离子的毒性。该文从分子水平上论述了根系分泌物、金属转运蛋白、MTs、PC、GSH在重金属耐性及超积累性中的作用, 评述了近 10年来这方面的研究进展, 并在此基础上提出存在的问题和今后研究的重点。  相似文献   

7.
Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus Licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.  相似文献   

8.
Heavy metals impact on the cytoplasmic function in a number of different ways, principally by their binding to protein sulflhdryl groups, by producing a deficiency of essential ions and, eventually, by substituting the essemial ions. Other modes of toxicity are possible, including disruption of cell transport processes and oxidative damage by free radicals generated by metal redox cycling. Plants have developed a variety of biochemical defense strategies to prevent heavy metal poisoning. The possible defense mechanism in plant may involve: metal binding to cell walls, avoidance of uptake these toxic metal ions, reduction of heavy metal transport across the cell membrane, active efflux, compartmentalization and metal chelation. Phytochelatins that can tightly bind and sequester metals may play an important role in the accumulation of heavy metals and preventing them from entering the cell metabolic pathway, the rates of high molecular weight (HMW) metal phytochelatin complexes (Cd-Sa-complex) formation may be an important determinant of the plant tolerance. In addition, plants possess several antioxidant defense systems to protect themselves from the oxidative stress by heavy metals.  相似文献   

9.
Antioxidant enzyme responses of plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.  相似文献   

10.
Ling Li  Xuyu Yan 《Phyton》2021,90(6):1559-1572
Alleviating heavy metal pollution in farmland soil, and heavy metal toxicity in plants is the focus of global agricultural environmental research. Melatonin is a kind of indoleamine compound that wide exists in organisms; it is currently known as an endogenous free radical scavenger with the strongest antioxidant effect. As a new plant growth regulator and signaling molecule, melatonin plays an important role in plant resistance to biotic or abiotic stress. Recent studies indicate that melatonin can effectively alleviate heavy metal toxicity in crop plants, which provides a new strategy to minimize heavy metal pollution in crop plants. This study summarizes the research progress on the role of melatonin in alleviating heavy metal toxicity in crop plants and the related physiological and ecological mechanisms such as reducing the concentration of heavy metals in the rhizosphere, fixing and regionally isolating of heavy metals, maintaining the mineral element balance, enhancing the antioxidant defense system and interacting with hormonal signaling. Furthermore, future prospects for the mechanism of melatonin in regulating heavy metal toxicity, the pathway regulating synthesis and catabolism, and the interaction mechanism of melatonin signaling and other phytohormones are presented in this paper, with the goal of providing a theoretical basis for controlling heavy metal ion accumulation in crop plants grown in contaminated soil.  相似文献   

11.
12.
植物耐重金属机理研究进展   总被引:80,自引:0,他引:80  
由于工业“三废”和机动车尾气的排放、污水灌溉及农药、除草剂和化肥的使用,严重地污染了土壤、水质和大气,其中土壤中的重金属(Hg、Cd、As、Cu和Al)污染更为严重[1]。重金属在植物根、茎、叶及籽粒中的大量累积,不仅严重地影响植物的生长和发育[1~...  相似文献   

13.
Soil heavy metal pollution has become a worldwide environmental issue that has attracted considerable public attention, largely from the increasing concern for the security of agricultural products. Heavy metals refer to some metals and metalloids possessing biological toxicity, such as cadmium, mercury, arsenic, lead, and chromium. These elements enter the soil agro-ecosystem through natural processes derived from parent materials, and through anthropogenic activities. Heavy metal pollution poses a great threat to the health and well-being of organisms and human beings due to potential accumulation risk through the food chain. Remediation using chemical, physical, and biological methods has been adopted to solve the problem. Phytoremediation has proven to be a promising alternative to conventional approaches as it is cost effective, environmentally friendly, and aesthetically pleasing. To date, based on the natural ability of extraction, approximately 500 taxa have been identified as hyperaccumulators of one or more metals. In addition, further research integrating biotechnological approaches with comprehensive multidisciplinary research is needed to improve plant tolerance and reduce the accumulation of toxic metals in soils. This review discusses harmful effects, sources of heavy metals, and the remediation technologies for soil contaminated by heavy metals.  相似文献   

14.
15.
植物重金属转运蛋白研究进展   总被引:7,自引:0,他引:7  
Jin F  Wang C  Lin HJ  Shen YO  Zhang ZM  Zhao MJ  Pan GT 《应用生态学报》2010,21(7):1875-1882
土壤中的有毒重金属不仅对植物有害,也可通过食物链危害人类和动物的健康.重金属转运蛋白在植物吸收、抵抗重金属的复杂机制中起着关键作用.植物重金属转运蛋白分为吸收蛋白和排出蛋白,其中,吸收蛋白转运必需重金属进入细胞,同时也会因为必需重金属的缺乏或离子之间的竞争而运载有毒重金属;排出蛋白是一类解毒蛋白,可将过量的或有毒的重金属逆向转运出细胞,或区室化于液泡中.目前,细胞内多种重金属转运蛋白基因的转录水平与重金属离子积累之间的联系已被揭示,并分离克隆出诸多相关蛋白家族成员.本文综述了近年来发现并鉴定的主要重金属转运蛋白的金属亲和性、器官表达特异性及细胞内定位等的研究进展.  相似文献   

16.
microRNA (miRNA)是一种新型的长度为20~24 nt的非编码RNA,通过对靶基因的表达调节进而参与调控植物体的多种生理代谢活动。重金属是一类重要的环境污染物,严重危害植物的生长发育,甚至导致植物死亡。植物在长期的进化过程中形成了抵御重金属胁迫的多种机制,如miRNA对特定基因转录后水平的调控就在逆境胁迫应答中发挥重要作用。本文综述了植物中参与重金属胁迫应答miRNA的种类及作用机制,为揭示重金属胁迫条件下基因表达调控机制,以及利用基因工程手段改良植物对重金属的耐受性提供了线索和依据。  相似文献   

17.
小麦不同生育时期Cd、Cr、Pb污染监测指标体系   总被引:13,自引:0,他引:13  
以小麦为供试材料,分别采用发芽试验、溶液培养、土柱栽培等毒理试验方法,研究了小麦萌芽期、幼苗期及成株期受重金属污染毒害的指标体系。结果表明,①小麦根伸长抑制率可作为萌芽期重金属污染评价的一项生物指标;Cd、Cr、Pb对小麦根生长的7d半效应浓度(EC50)值分别为1.39、0.20mmo.lL-1和2.75mmol.L-1,据此得到3种重金属对小麦同一性状的毒性次序为CrCdPb;此外各性状抑制率与胁迫浓度的关系可用双曲线模型y=x/(a+x/100)或指数曲线模型y=a(1-exp(-bx))较好模拟。②Cd、Cr、Pb单一污染胁迫对小麦幼苗性状的毒性次序均以影响叶面积和冠部干重为主,表明叶面积和冠部干重为幼苗期污染监测的敏感指标;重金属对除根干重外所有性状的毒性次序:CrCdPb,该毒性次序是根据引起50%抑制的临界浓度即EC50值确定的;各性状抑制率与胁迫浓度的关系可用直线模型、或双曲线模型、或指数曲线模型较好模拟。③重金属单一污染胁迫造成小麦籽粒产量下降幅度是CdCrPb;二元互作对产量影响的重要性次序为CdCrCdPbCrPb;在Cd、Cr、Pb复合污染胁迫条件下,穗数可以作为成株期重金属污染监测的首选指标。以上指标可为农田小麦重金属污染的监测和综合治理提供一些理论依据。  相似文献   

18.
植物螯合肽及其在重金属耐性中的作用   总被引:26,自引:0,他引:26  
综述植物螯合肽的生物合成及其在重金属耐性中的作用.有毒重金属在土壤中的积累不仅影响作物的生长和产量形成,而且严重威胁农产品的安全性.植物对重金属的耐性和积累在种间和基因型之间存在着很大的差异,在重金属胁迫条件下植物螯合肽(PC)的合成是植物对胁迫的一种适应性反应,耐性基因型合成较多的PC谷胱苷肽是合成PC的前体,PC可与重金属螯合,并进一步转运至液泡贮存,使细胞质的重金属浓度降低,从而达到解毒效果.重金属诱导植物合成PC的遗传机理和生化途径有赖于分子生物学的深入研究,cD-敏感型拟南芥突变体Cad1-1(缺失GSH)和Cad2-1(缺失PC合成诱导酶)的分离及相关研究,佐证了PC在Cd-解毒中起关键作用.对PC在重金属污染土壤或水体的植物修复和农作物安全生产中的意义进行了讨论.  相似文献   

19.
镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展   总被引:4,自引:0,他引:4  
土壤重金属污染引发了一系列严峻的环境问题.其中,镉(Cd)是生物毒性最强的重金属元素之一.活性氧(ROS)过量积累引起的氧化胁迫,是Cd毒害植物的主要原因之一.本文围绕Cd胁迫引起的ROS积累及清除过程,重点阐述介导上述过程的一些信号调控物质包括一氧化氮(NO)、钙(Ca)、植物激素如生长素(IAA)和脱落酸(ABA)等及有丝分裂原活化蛋白激酶(MAPKs)的变化及其在缓解Cd诱导的氧化胁迫中的作用,以期为今后植物抗Cd胁迫生理生化机制的研究提供一定的理论依据.  相似文献   

20.
Sunflower mutant lines with an enhanced tolerance and metal accumulation capacity obtained by mutation breeding have been proposed for Zn, Cd and Cu removal from metal-contaminated soils in previous studies. However, soils contaminated with trace elements induce various biochemical alterations in plants leading to oxidative stress. There is a lack of knowledge concerning the metal accumulation and antioxidant responses during the growth and development of sunflowers. This study, therefore, aimed to characterise metal accumulation and possible metal detoxification mechanisms in young seedlings and adult sunflowers. Beside the inbred line, two mutant lines with an improved growth and enhanced metal uptake capacity on a metal contaminated soil were investigated in more detail.Sunflowers cultivated on a metal-contaminated soil in the greenhouse showed a decrease in shoot biomass and chlorophyll concentration in two different developmental stages. Adult sunflowers showed a lower sensitivity to metal toxicity than young seedlings, whereas mutant lines were more tolerant to metal stress than the control. Mutant lines also produced a higher amount of carotenoids on a metal-contaminated soil than on the control soil, indicating a possible protective mechanism of sunflower mutants against oxidative stress caused by Cd and excess Zn.Heavy metals primarily increased the activity of antioxidant enzymes involved in the ascorbate–glutathione cycle in sunflower leaves. Activity of dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) was strongly increased in young seedlings exposed to heavy metals. The enzyme activities were even more pronounced in mutant lines. A significantly increased ascorbate peroxidase (APOX) activity in adult sunflowers exposed to heavy metals indicated an elevated use of ascorbate after a longer exposure to metal stress.An increased antioxidant level corresponded to a high Cd and Zn accumulation in young and adult sunflowers. Metal distribution, zinc translocation in particular, from the root into the shoot tissue obviously increased during sunflower growth and ripening. Altogether, these results suggest that sunflower plants, primarily the mutant lines, possess an efficient defence mechanism against oxidative stress caused by metal toxicity. A good tolerance of sunflowers toward heavy metals coupled with an increased metal accumulation capacity might contribute to an efficient removal of heavy metals from a polluted area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号