首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
介绍一种改进的研究气孔运动的方法   总被引:11,自引:0,他引:11  
本文介绍了以液氮现场固定叶样,扫描电镜直接观察(照相)记录气孔形态、分布、日变化等的方法。从给出的实例可以看到该法能成功地记录气孔在一天的动态变化情况。这种方法特别适合于研究叶表皮密被绒毛的植物。  相似文献   

2.
在光学显微镜下观察了不同产地何首乌叶表皮结构特征,应用多元回归方法对不同产地何首乌的叶表皮特征与气候因子的关系进行了分析。观察的叶表皮特征指标有气孔密度、气孔指数、气孔器长、气孔器宽、气孔极区角质加厚、气孔器类型、表皮细胞垂周壁性状及叶表面角质条纹。观察结果:上表皮有少量气孔器分布;在下表皮,气孔器类型为非典型不等细胞型和不规则型,有少量腺鳞分布,气孔器密度每1mm2为241.7(64~573)个,气孔指数为17.1(7.5~26.5)%,气孔器长31.1(20~44)μm,气孔器宽23.1(16~38)μm。随着产地的不同,何首乌叶下表皮结构有明显差异。分析结果显示气孔器、气孔器宽度以及气孔密度均与纬度关系密切,随纬度的升高,气孔器长、气孔器宽呈减小的趋势,气孔密度呈增加的趋势,R2值分别为0.619、0.729、0.772。  相似文献   

3.
探索一种用材简单、操作方便、真实性强的观察红树植物桐花树叶片气孔的制片技术,并利用该技术研究不同浓度、不同处理时间的一氧化氮(NO)供体硝普钠(sodium nitroprusside,SNP)对桐花树气孔开闭的影响,探讨了NO调控的气孔运动与外源Ca^2+的关系以及NO与H202在调节气孔运动过程中的关系。结果表明:在搅碎法、指甲油印迹法、牛皮胶印迹法三种观察气孔方法中,牛皮胶印迹法是观察气孔开度变化的最佳方法。NO能够诱导桐花树气孔快速关闭,且表现出明显的时间效应与浓度效应。NO导致的气孔关闭与Ca^2+的参与有密切关系,NO与H,q存在明显的协同效应,可以促进气孔关闭。  相似文献   

4.
【背景】探讨入侵种假臭草不同生境下气孔的变化规律,揭示假臭草种群在不同生境下所采取的生长对策及适应机制,可为入侵生物的防治提供参考。【方法】采取光学显微镜系统观察桉树林、木薯地、弃耕地、公路边4种生境下假臭草叶片的气孔特征。【结果】光照和土壤肥、水条件对假臭草叶片的气孔孔径(横轴方向和纵轴方向)、单个气孔器面积、气孔器总面积、气孔密度及气孔指数的影响显著。低光照及肥沃、湿润土壤生境与高光照及贫瘠、干旱土壤相比,假臭草的气孔孔径(横轴方向和纵轴方向)、单个气孔器面积、气孔器总面积较大,气孔密度及气孔指数较小。【结论与意义】假臭草叶片气孔特征表现可塑性,说明其对异质环境具有一定的生态适应能力。  相似文献   

5.
本文据同步观测到的气孔阻力和土壤水势、净辐射能、气温、叶温、水汽压、饱和差、风速等环境因素变化值,用统计方法分析了小麦叶片气孔阻力与环境因素的关系,结果表明:冬小麦叶片的气孔导性主要受土壤水势影响。叶片正反两面的气孔对环境因素变化的反应不同,正面气孔导性主要受土壤水势影响,而反面气孔导性则与气温、水汽压和饱和差关系较大。  相似文献   

6.
气孔的不均匀关闭与光合作用的非气孔限制   总被引:42,自引:2,他引:40  
简要评述气孔不均匀关闭现象的诱发因素和气孔不均匀关闭与光合作用的非气孔限制假象的关系以及几种检测气孔不均匀关闭的方法。  相似文献   

7.
首次报道我国渐新世银杏属植物叶化石。化石采自黑龙江汤原县太平川剖面宝泉岭组,角质层保存状态良好。叶为下气孔式。上表皮细胞垂周壁平直,平周壁较平。下表皮大量气孔器不规则地散布于脉间区,形成气孔带;气孔密度约为117个/mm2;气孔器为单环式,保卫细胞下陷,侧副卫细胞角质化强烈并形成乳突。当前材料的形态及显微构造特征与古近纪北半球广泛分布的铁线蕨型银杏Ginkgo adiantoides(Ung.)Heer emend.Flo-rin(auctorum multorum)基本一致。这是我国目前已知年代最新的银杏大化石记录,对于探究银杏属在我国新生代的分布、迁徙以及当时相关的古植物地理和气候环境等具有重要意义。  相似文献   

8.
单子叶植物叶片气孔观察方法改良的研究   总被引:6,自引:0,他引:6  
封涛  胡东 《植物研究》2008,28(1):82-84
通过对传统的植物叶片气孔观察方法的改良,建立了一种观察单子叶植物气孔的有效方法。该方法不仅能够分清上下表皮、准确定位,而且简单易行,具有很高的可靠性和稳定性。实验中采用该法可以准确地获得植物叶片的气孔参数,为植物学及生态学的相关研究提供方法上的参考依据。  相似文献   

9.
植物叶片气孔性状变异的影响因素及研究方法   总被引:3,自引:0,他引:3  
气孔是陆生植物与外界环境进行水分和气体交换的主要通道,在全球水和碳循环中发挥着重要作用.植物的气孔性状包括气孔密度、气孔形状和大小、气孔指数等,是植物在进化过程中对外界环境因子长期适应的结果,并对环境因子变化表现出高度的敏感性.本文评述了国内外近30年来植物气孔性状与大气CO2浓度、温度、水分、光照等环境因素的关系研究的主要方法和成果,展望了今后植物气孔性状对气候变化响应的主要研究方向.  相似文献   

10.
气孔不均匀关闭与光合作用的非气孔限制   总被引:24,自引:0,他引:24  
简要评述气孔不均匀关闭现象的诱发因素和气孔不均匀关闭与光合作用的非气孔限制假象的关系以及几种检测气孔不均匀关闭的方法。  相似文献   

11.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

12.
Dicot leaf growth is characterized by partly transient tip-to-base gradients of growth processes, structure and function. These gradients develop dynamically and interact with dynamically developing stress conditions like drought. In Ricinus communis plants growing under well-watered and drought conditions growth rates peaked during the late night and minimal values occurred in the late afternoon. During this diurnal course the leaf base always showed much higher rates than the leaf tip. The amplitude of this diurnal course decreased when leaves approached maturity and during drought stress without any significant alteration of the diurnal pattern and it increased during the first days after rewatering. Unique relationships between leaf size and cytological structure were observed. This provided the framework for the analysis of changes in assimilation, transpiration and dark respiration, chlorophyll, protein, carbohydrate, and amino acid concentrations, and of activities of sink-source-related enzymes at the leaf tip and base during leaf development in well-watered and drought-stressed plants. Gas exchange was dominated by physiological rather than by anatomical properties (stomatal density). Tip-to-base gradients in carbohydrate concentrations per dry weight and sink-source-related enzymes were absent, whereas significant gradients were found in amino acid concentrations per dry weight. During drought stress, growing leaves developed source function at smaller leaf size, before specific physiological adaptations to drought occurred. The relevance of the developmental status of individual leaves for the drought-stress response and of the structural changes for the biochemical composition changes is discussed.  相似文献   

13.
茶树蒸腾特性的研究   总被引:17,自引:1,他引:16  
茶树蒸腾速率和气孔导度因品种、叶位不同而异.抗旱性强的品种具有低的气孔导度;鱼叶的蒸腾速率和气孔导度接近或高于真叶.茶树叶片蒸腾速率夏、秋季最高,春季次之,冬季最低.在晴天,茶树蒸腾速率和气孔导度的日变化呈单峰型,以中午前后最高;其日变化与光量子通量密度、叶温、蒸汽压亏缺等因子显著相关;光量子通量密度对蒸腾速率和气孔导度影响较明显.  相似文献   

14.
桃树冠层蒸腾动态的数学模拟   总被引:1,自引:0,他引:1  
将气孔导度公式、Penman—Monteith公式和土壤水分限制模型相结合,可以模拟出不同环境因子对植物蒸腾进程的影响。通过对盆栽桃树(Prunus persica var.nectadna Maxim.)数值模拟发现:影响桃树蒸腾速率的主要气象因子是太阳辐射、大气温度和湿度。植物通过气孔导度的改变来响应气象因子的变化,蒸腾的日变化主要是由气象因子的日变化引起的。土壤的水分状况也对气孔导度有显著的影响,进而影响植物的蒸腾大小。通过数值模拟还发现植物的蒸腾量并不总是随叶面积的增大而增大,对于桃树而言叶面积指数为4左右时日蒸腾量达到最大值。通过对气孔导度和蒸腾速率的模拟值和实测值进行检验发现,两者基本吻合,说明利用数学模拟的方法可以求出不同环境条件和不同叶面积桃树冠层的蒸腾速率。  相似文献   

15.
比较盆栽 生榕树和两栖型树的形态差异、叶片叶绿素含量、叶绿素荧光特性和气体交换的日变化。两栖型榕树具有较发达的气生根和水生不定根,叶片比陆生榕树宽,并有向中生性 倾向,陆生榕树的叶绿素含量比两栖榕树高,净光合速率略高于水培两栖型榕树,但明显高于土培两栖型榕树,蒸腾速率以水培两栖型树最高,陆生榕树次之,土培两栖型榕树最低,线性回归分析表明,三者的叶片气孔导度与净光合速率变化均呈正相关,气孔导度的变化  相似文献   

16.
Midday depression of net photosynthesis and transpiration in the Mediterranean sclerophylls Arbutus unedo L. and Quercus suber L. occurs with a depression of mesophyll photosynthetic activity as indicated by calculated carboxylation efficiency (CE) and constant diurnal calculated leaf intercellular partial pressure of CO2 (Ci). This work examines the hypothesis that this midday depression can be explained by the distribution of patches of either wide-open or closed stomata on the leaf surface, independent of a coupling mechanism between stomata and mesophyll that results in a midday depression of photosynthetic activity of the mesophyll. Pressure infiltration of four liquids differing in their surface tension was used as a method to show the occurrence of stomatal patchiness and to determine the status of stomatal aperture within the patches. Liquids were selected such that the threshold leaf conductance necessary for infiltration through the stomatal pores covered the expected diurnal range of calculated leaf conductance (g) for these species. Infiltration experiments were carried out with leaves of potted plants under simulated Mediterranean summer conditions in a growth chamber. For all four liquids, leaves of both species were found to be fully infiltratable in the morning and in the late afternoon while during the periods leading up to and away from midday the leaves showed a pronounced patchy distribution of infiltratable and non-infiltratable areas. Similar linear relationships between the amount of liquid infiltrated and g (measured by porometry prior to detachment and infiltration) for all liquids clearly revealed the existence of pneumatically isolated patches containing only wide-open or closed stomata. The good correspondence between the midday depression of CE, calculated under the assumption of no stomatal patchiness, and the diurnal changes in non-infiltratable leaf area strongly indicates that the apparent reduction in mesophyll activity results from assuming no stomatal patchiness. It is suggested that simultaneous responses of stomata and mesophyll activity reported for other species may also be attributed to the occurrence of stomatal patchiness. In Quercus coccifera L., where the lack of constant diurnal calculated Ci and major depression of measured CE at noontime indicates different stomatal behavior, non-linear and dissimilar relationships between g and the infiltratable quantities of the four liquids were found. This indicates a wide distribution of stomatal aperture on the leaf surface rather than only wide-open or closed stomata.Dedicated to Professor Otto L. Lange on the occasion of his 65th birthday  相似文献   

17.
The possibility that Crassulacean acid metabolism (CAM) is subject to long day photoperiodic control in Portulacaria afra (L.) Jacq., a facultative CAM plant, was studied. Periodic measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made on plants exposed to long and short day photoperiods. Results indicates that waterstressed P. afra had primarily nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation in either photoperiod. Mature leaf tissue from nonstressed plants under long days exhibited a moderate diurnal acid fluctuation and midday stomatal closure. Under short days, there was a reduced diurnal acid fluctuation in mature leaf tissue. Young leaf tissue taken from nonstressed plants did not utilize the CAM pathway under either photoperiod as indicated by daytime CO2 uptake, lack of diurnal acid fluctuation, and incomplete daytime stomatal closure.

The induction of CAM in P. afra appears to be related to the water status of the plant and the age of the leaf tissue. The photosynthetic metabolism of mature leaves may be partly under the control of water stress and of photoperiod, where CAM is favored under long days.

  相似文献   

18.
This study quantified stomatal conductance in a CO2-fertilized warm-temperate forest. The study considered five items: (1) the characteristics of the diurnal and seasonal variation, (2) simultaneous measurements of canopy-scale fluxes of heat and CO2 and the normalized difference vegetation index (NDVI), (3) the stomatal conductance of sunlit and shaded leaves, (4) a stomatal conductance model, and (5) the effects of leaf age on stomatal conductance. Sampled plants included evergreen and deciduous species. Stomatal conductance, SPAD, and leaf nitrogen content were measured between March and December 2001. Sunlit leaves had the largest diurnal and seasonal variation in conductance in terms of both magnitude and variability. In contrast, shaded leaves had only low conductance and slight variation. Stomatal conductance increased sharply in new shooting leaves of Quercus serrata until reaching a maximum 2 months after full leaf expansion. The seasonal changes in the canopy-scale heat and CO2 fluxes were similar to the change in the canopy-scale NDVI of the upper-canopy plants. These seasonal changes were correlated with the leaf-level H2O/CO2 exchanges of upper-canopy plants, although these did not represent the stomatal conductance in fall completely. Seasonal variations in the leaf nitrogen content and SPAD were similar, except leaf foliation, until day 130 of the year, when the behaviors were completely the opposite. A Jarvis-type model was used to estimate the stomatal conductance. We modified it to include SPAD as a measure of leaf age. The seasonal variation in stomatal conductance was not as sensitive to SPAD, although estimates for evergreen species showed improvements.  相似文献   

19.
Summary In Australia, diurnal courses of leaf conductance and transpiration of hemiparasitic mistletoes (Loranthaceae) and their hosts were measured using steady-state porometers under conditions of partial drought and high evaporative demand. The sites spanned a diversity of climatic regions ranging from the subtropical arid zone with winter rainfall, through the subtropical arid zone with summer rainfall to the tropical summer rainfall zone. With one exception (Acacia farnesiana with deciduous leaves), the hosts were trees or shrubs with evergreen, sclerophyllous leaves or phyllodes.The measurements confirm previous observations that mistletoes transpire at higher rates than their hosts. For adult leaves from all of the 18 different host/mistletoe pairs investigated, the daily average leaf conductances were higher in the parasites than in their hosts. The ratios ranged from 1.5 to 7.9. In the most extreme case,Amyema maidenii had a daily rate of water loss 8.9 times higher than its hostAcacia cowleana. Hoever, the parasites did not exhibit unlimited transpiration. Despite high water loss rates, leaf conductance showed large and consistent changes during the course of the day, indicating definite stomatal regulation. The typical diurnal pattern of conductance in both mistletoes and hosts consisted of an early morning peak followed by a continuous decrease throughout the remainder of the day. There was no abrupt decrease in leaf conductance of the parasites that might be interpreted as a threshold response with respect to internal water potential. In most cases, the continuous stomatal closure occurred without substantial changes in leaf water potential over a time span of several hours. The decrease in leaf conductance was correlated with an increase in leaf-to-air water vapor difference, which was associated with increasing leaf temperatures. It seems probable that external humidity plays a major role in the stomatal response. Diurnal courses of leaf conductance of the host/parasite pairs usually showed similar general patterns, even when the absolute rates were quite different. Thus, mistletoes not only control their water loss by stomatal action but this regulation seems to occur in coordination with the stomatal response of their hosts.The integrated mistletoe/host system must also endure severe drought conditions. Controlled water use is necessary for long-term survival of the host. Assuming stomatal behavior in the host is well adapted to ensure its existence, then similar performance in the mistletoe would promote survival of both host and parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号