首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.  相似文献   

2.
Chemotherapy alteration of the bone marrow microenvironment has the potential to influence hematopoietic recovery following transplantation. To discern the effect of specific drugs on components of the complex marrow microenvironment, in vitro models have significant utility. In the current study we sought to determine whether dermal (HMEC-1) and marrow derived endothelial cells (BMEC-1) respond differently to identical chemotherapy exposure. BMEC-1 cells were consistently more sensitive to etoposide exposure than HMEC-1 cells, measured as reduced viability. BMEC-1 also had reduced focal adhesion kinase (FAK) and VCAM-1 protein expression following chemotherapy, in contrast to dermal derived endothelial cells in which neither protein was influenced dramatically by etoposide. The two endothelial cell lines had markedly different levels of baseline VE-Cadherin protein, which was modestly altered by treatment. These data indicate that marrow derived endothelial cells have disruption of specific proteins following chemotherapy that may influence their ability to facilitate hematopoietic cell entry or egress from the marrow. In addition, these observations suggest that while BMEC-1 and HMEC-1 share a variety of characteristics, they differ significantly in their response to stress and should be incorporated into specific models with this consideration.  相似文献   

3.
IL-6 mediates its activity through a cell surface receptor composed of a signal transducing protein, CD130, and a ligand-binding protein which exists in membrane-bound form (CD126) or in soluble form (sIL-6R alpha). Interestingly, sIL-6R alpha combined with IL-6 is able to interact with CD130 leading to the intracellular cascade of activation. In the present study, using flow cytometry, we show that stromal cells from human bone marrow (BMSC) express CD130 but not CD126. We demonstrate that BMSC are responsive to IL-6 only in the presence of exogenous sIL-6R alpha. Indeed, exogenous sIL-6R alpha induces in BMSC the production of its own ligand, IL-6, and of both MMP-1 and MMP-2, two matrix metalloproteinases involved in bone resorption and in tumour spreading, respectively. Since myeloma cells release sIL-6R alpha in the close vicinity of BMSC, these data suggest a role for this factor in the pathophysiology of multiple myeloma, a B-cell malignancy dependent on IL-6 for its growth and characterized by bone destruction.  相似文献   

4.
Interactions between the malignant plasma cells of multiple myeloma and stromal cells within the bone marrow microenvironment are essential for myeloma cell survival, mirroring the same dependence of normal bone marrow-resident long-lived plasma cells on specific marrow niches. These interactions directly transduce prosurvival signals to the myeloma cells and also induce niche production of supportive soluble factors. However, despite their central importance, the specific molecular and cellular components involved remain poorly characterized. We now report that the prototypic T cell costimulatory receptor CD28 is overexpressed on myeloma cells during disease progression and in the poor-prognosis subgroups and plays a previously unrecognized role as a two-way molecular bridge to support myeloid stromal cells in the microenvironment. Engagement by CD28 to its ligand CD80/CD86 on stromal dendritic cell directly transduces a prosurvival signal to myeloma cell, protecting it against chemotherapy and growth factor withdrawal-induced death. Simultaneously, CD28-mediated ligation of CD80/CD86 induces the stromal dendritic cell to produce the prosurvival cytokine IL-6 (involving novel cross-talk with the Notch pathway) and the immunosuppressive enzyme IDO. These findings identify CD28 and CD80/CD86 as important molecular components of the interaction between myeloma cells and the bone marrow microenvironment, point to similar interaction for normal plasma cells, and suggest novel therapeutic strategies to target malignant and pathogenic (e.g., in allergy and autoimmunity) plasma cells.  相似文献   

5.

Background

The host''s response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development.

Methodology/Principal Findings

In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using ELISA and real-time PCR.

Conclusion

BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75NTR. These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFκB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis.  相似文献   

6.
Originating from a post-switch memory B cell or plasma cell compartment in peripheral lymphoid tissues, malignant myeloma cells accumulate in the bone marrow of patients with multiple myeloma. In this favorable microenvironment their growth and survival are dependent upon both soluble factors and physical cell-to-cell and cell-to-extracellular matrix contacts. In this report we show that hyaluronan (HA), a major nonprotein glycosaminoglycan component of the extracellular matrix in mammalian bone marrow, is a survival and proliferation factor for human myeloma cells. The effect of HA is mainly mediated through a gp 80-interleukin 6 (IL-6) receptor pathway by a CD44-independent mechanism, suggesting that HA retains and concentrates IL-6 close to its site of secretion, thus favoring its autocrine activity. In addition, we show that HA-mediated survival and proliferation of myeloma cells is associated with a down-regulation in the expression of p27(kip1) cyclin-dependent kinase inhibitor and a hyperphosphorylation of the retinoblastoma protein (pRb). These data suggest that HA could be an important component in the myeloma cell physiopathology in vivo by potentiating autocrine and/or paracrine IL-6 activities.  相似文献   

7.
Barton BE  Murphy TF 《Cytokine》2000,12(10):1537-1545
Myeloma is a neoplasm thought to "home" to bone marrow. However, evidence for bone-marrow-specific receptors or adhesion molecules expressed on myeloma cells is scanty. Initial myeloma expansion is thought to be due to IL-6 and/or related cytokines. Previous determinations of cytokine expression in bone marrow were performed on bone marrow stromal lines; these findings may not reflect the constitutive pattern of expression in situ. Intracytoplasmic staining for IL-6-like cytokines revealed constitutive expression of some factors in the bone marrow of normal mice, but not spleens. Spleens of myeloma-transplanted SCID mice expressed IL-6-like cytokines, indicative of induction of expression by myeloma. Some cytokines expressed in bone marrow induced myeloma proliferation in the presence of dexamethasone, demonstrating dependence of the myeloma on these cytokines. Our data imply that, rather than "homing" to bone marrow, myeloma cells proliferated within marrow cavities more than in other organs because of growth factors constitutively expressed by bone marrow cells. As myeloma progressed, we observed the induction of growth factor expression in spleen cells. Furthermore, because cytokines other than IL-6 may induce myeloma cell proliferation, therapy aimed at neutralizing IL-6 may not be the most effective method to treat this disease. These findings have implications for both the pathophysiology and therapy of multiple myeloma.  相似文献   

8.
Monosomy 7 arises as a recurrent chromosome aberration in donor cell leukemia after hematopoietic stem cell transplantation. We report a new case of donor cell leukemia with monosomy 7 following HLA-identical allogenic bone marrow transplantation for severe aplastic anemia (SAA). The male patient received a bone marrow graft from his sister, and monosomy 7 was detected only in the XX donor cells, 34 months after transplantation. The patient’s bone marrow microenvironment may have played a role in the leukemic transformation of the donor hematopoietic cells.  相似文献   

9.
10.
It is well established that the bone marrow microenvironment provides a unique site of sanctuary for hematopoietic diseases that both initiate and progress in this site. The model presented in the current report utilizes human primary bone marrow stromal cells and osteoblasts as two representative cell types from the marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions described for human leukemic cells with these primary niche components support the generation of a chemoresistant subpopulation of tumor cells that can be efficiently recovered from culture for analysis by diverse techniques. A strict feeding schedule to prevent nutrient fluxes followed by gel type 10 cross-linked dextran (G10) particles recovery of the population of tumor cells that have migrated beneath the adherent bone marrow stromal cells (BMSC) or osteoblasts (OB) generating a "phase dim" (PD) population of tumor cells, provides a consistent source of purified therapy resistant leukemic cells. This clinically relevant population of tumor cells can be evaluated by standard methods to investigate apoptotic, metabolic, and cell cycle regulatory pathways as well as providing a more rigorous target in which to test novel therapeutic strategies prior to pre-clinical investigations targeted at minimal residual disease.  相似文献   

11.
Irradiation from γ-rays can cause severe damage to bone marrow and hematopoietic tissues. Presently, the most effective method available to treat severe hematopoietic injury is a bone marrow transplant (BMT). Allogeneic BMT is a difficult technique to perform due to the differences in human leukocyte antigen proteins between the donor and recipient, with acute graft-versus-host disease being a major complication of the technique. This limits the widespread applicability of allogeneic BMT. To develop a novel treatment for acute hematopoietic damage, we transplanted bone marrow derived mesenchymal stem cells (MSCs) into recipient mice and treated them with recombinant human bone morphogenetic protein 2 (rhBMP2) to investigate whether MSCs and rhBMP2 could additively promote the restoration of hematopoietic function. MSCs are vital components of the hematopoietic microenvironment that supports hematopoiesis, and bone morphogenic protein is a key factor in hematopoiesis. The 30-day survival rate as well as the numbers of nucleated cells, bone marrow colony-forming unit-granulocyte macrophages, spleen colony-forming units and peripheral blood cells were enumerated. The results showed that, after γ-irradiation and transplantation, MSCs and rhBMP2 additively promoted and improved hematopoietic restoration and function in vivo and in vitro. This additive effect of MSCs and rhBMP2 may one day provide a novel means of treating acute hematopoietic damage.  相似文献   

12.
Resistance of myeloma cells to melphalan (L-PAM) is a serious problem. To investigate mechanisms of drug resistance, we generated a monoclonal antibody, clone O3, to melphalan-resistant myeloma cells, KHM-11R. Western blot analysis showed that molecular weight of O3 antigen was approximately 90 kDa. Expression of O3 antigen was approximately two times higher in KHM-11R than in parental melphalan sensitive cell line, KHM-11. O3 was preferentially expressed in plasma cell, B-cell, and monocytic cell lines, but not in T-cell lines. Analysis of bone marrow samples from myeloma patients revealed that 13 of 23 samples expressed O3 antigen at various levels, and that O3 antigen expression in patients correlate with preceding chemotherapy, advanced clinical stage and extramedullar invasion of myeloma cells. Furthermore, patients expressing O3 antigen at the time of diagnosis tended to have poor prognosis. The investigation of O3 antigen in myeloma cells will be useful to reveal the pathophysiology of extramedullar invasion and the mechanism of cell killing by melphalan.  相似文献   

13.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   

14.
Multiple myeloma remains incurable despite advances in conventional chemotherapy and wider applicability of high dose chemotherapy with single and/or tandem autologous peripheral blood stem cell transplantation. Although a complete remission rate of 41% and an event-free survival of 43 months have been reported after tandem transplantation, it is highly unlikely that further improvements in the outcome of multiple myeloma will be achieved by escalating cytotoxic chemotherapy alone. Novel biologically based therapies are therefore urgently required. Targeted therapeutic approaches based on: identification of genetic abnormalities in malignant plasma cells; interrupting growth of myeloma cells; triggering apoptotic signaling cascades in tumor cells; modulating growth and survival of multiple myeloma cells in the bone marrow microenvironment, i.e. angiogenesis and cytokine networks; enhancing allogeneic and autologous antimyeloma immunity; and characterizing newer myeloma antigens for serotherapy are under development. These therapies offer great promise, used alone/or in combination with conventional treatment approaches, to improve the outcome in this disease in newly diagnosed/refractory or relapsed patients with multiple myeloma.  相似文献   

15.

Background

In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells.

Design and Methods

The aims of this study were to investigate the constitutive abnormalities in myeloma bone marrow mesenchymal stromal cells and to evaluate the impact of new treatments.

Results

We demonstrated that myeloma bone marrow mesenchymal stromal cells have an increased expression of senescence-associated β-galactosidase, increased cell size, reduced proliferation capacity and characteristic expression of senescence-associated secretory profile members. We also observed a reduction in osteoblastogenic capacity and immunomodulatory activity and an increase in hematopoietic support capacity. Finally, we determined that current treatments were able to partially reduce some abnormalities in secreted factors, proliferation and osteoblastogenesis.

Conclusions

We showed that myeloma bone marrow mesenchymal stromal cells have an early senescent profile with profound alterations in their characteristics. This senescent state most likely participates in disease progression and relapse by altering the tumor microenvironment.  相似文献   

16.
Effective hematopoiesis requires the presence of normal hematopoietic progenitors and a supporting microenvironment. Impairment of one of these marrow compartments will result in marrow failure. Total body irradiation (TBI) followed by bone marrow transplantation (BMT) is becoming an established modality in the treatment of malignant hematopoietic disorders. The objectives of irradiation are to ablate host marrow and immunocompetent cells as well as to eradicate neoplastic cells. Although leukemic cells are thought to have the same radiobiological characteristics as their normal counterparts, it has been proposed recently that some leukemic cells may possess a substantial capacity to repair sublethal radiation damage. Thus, radiation administered at different dose rates or fractions might differ in its ability to ablate malignant cells and consequently affect the relapse rate in the post-transplant period. Different modes of irradiation can also affect the proliferative capacity and the hematopoietic supportive function of the marrow microenvironment. Bone marrow ablation must be accomplished with the least possible damage to other tissues. Impairment of the proliferative capacity of the marrow microenvironment or its hematopoietic supportive function can result in graft failure in the post-transplant period. In this review, we discuss the radiobiological characteristics of normal hematopoietic, leukemic and stromal cells and their relevance to bone marrow transplantation.  相似文献   

17.
本文报道了重组白介素6-假单胞菌外毒素融合蛋白(IL-6-PE40)对正常BN大鼠骨髓粒系造血的体外效应。10ng/ml的IL-6-PE40对高表达IL-6受体的U266骨髓瘤细胞的蛋白质合成抑制率为50%,1000ng/ml则为100%。1~1000ng/mlIL-6-PE40对正常骨髓未纯化细胞的CFU-GM集落形成和DNA合成无明显抑制,但IL-6却具有一定的刺激效应。提示正常骨髓粒系祖细胞和骨髓细胞可能不表达IL-6受体,IL-6-PE40对粒系造血仍具有某些细胞毒作用,但被IL-6-PE40中的IL-6极大地削弱了。  相似文献   

18.
V M Lauta 《Cytokine》2001,16(3):79-86
Study of the network of cytokines has helped identify cell growth factors in multiple myeloma. Plasma cells themselves may produce autocrine interleukin 6 (IL-6) while IL-6 production by bone marrow stromal cells may operate a paracrine mechanism. Involvement of IL-6 in multiple myeloma is indicated by its ability to induce the differentiation of myeloma plasmablasts into mature malignant plasma cells. Differential diagnosis between multiple myeloma and monoclonal gammopathies of undetermined significance (MGUS) is generally based on clinical and laboratory parameters. Nevertheless, evaluation of the serum level of IL-6, C reactive protein, soluble IL-6 receptor, soluble IL-2 receptor together with the activity exerted by IL-3 and IL-4 on some cellular subsets constitutes an additional element in the differential diagnosis of border-line cases. Serum levels of IL-6, soluble IL-6 receptor (sIL-6R), soluble interleukin-2 receptor (sIL-2R) and the expression of membrane-bound IL-2 receptors, both on bone marrow plasma cells and on peripheral blood mononuclear cells are correlated with disease activity and disease stage. In addition, IL-6 and sIL-6R serum levels correlate with the duration of survival, as high values at the time of diagnosis correlate with short duration of survival.  相似文献   

19.
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture-expand MSCs from human bone marrow, and in this study, we examined the MSC's role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow-derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT-PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL-6, -7, -8, -11, -12, -14, and -15, M-CSF, Flt-3 ligand, and SCF. Steady-state levels of IL-11 and IL-12 mRNA were found to be greater in MSCs. Addition of IL-1α induced steady-state levels of G-CSF and GM-CSF mRNA in both cell preparations. In contrast, IL-1α induced IL-1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long-term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号