首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection. Here we have investigated the possible effects of rRNA synthesis inhibition upon the development of HCMV lytic infection, by using either actinomycin D or cisplatin at low concentrations, that are known to selectively inhibit RNA polymerase I activity, whilst leaving RNA polymerase II function unaffected. Following the inhibition of rRNA synthesis by either of the agents used, we observed a significant redistribution of nucleolar proteins within the nucleoplasm and a simultaneous depletion of viral pp65 from the nucleolus; this effect was highly evident in both unextracted cells and in nuclear matrices in situ. Of particular interest, even a brief suppression of rRNA synthesis resulted in a very strong inhibition of the progression of HCMV infection, as was concluded from the absence of accumulation of HCMV major immediate‐early proteins within the nucleus of infected cells. These data suggest that a functional relationship might exist between rRNA synthesis, pp65 localization to the nucleolar matrix and the normal development of HCMV lytic infection. J. Cell. Biochem. 108: 415–423, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The phosphoprotein pp65 (ppUL83) of human cytomegalovirus (HCMV) is abundantly synthesized during lytic infection in cultured fibroblasts. As a major constituent of extracellular particles, it gains entry to infected cells immediately after adsorption and subsequently translocates to the cell nucleus. This efficient transport is mediated by unique nuclear localization signals. To study the function of pp65, a viral deletion mutant was constructed by replacing the pp65 gene with the bacterial neomycin phosphotransferase gene, driven by the simian virus 40 early promoter. The resulting virus, RVAd65, could be grown and selected on human fibroblasts without complementation. The deletion of the pp65 gene in RVAd65 was verified by using Southern blot and PCR analyses. The lack of expression from the gene was investigated by immunoblotting with pp65-specific monoclonal antibodies. Single-cycle growth analyses showed that RVAd65 grew to levels of infectivity comparable to those of the wild-type virus. Therefore, pp65 is nonessential for the growth of HCMV in human fibroblasts. Electron microscopy revealed no differences in the processes of virion morphogenesis, although the maturation appeared to be delayed. However, the kinetics of expression of the immediate-early genes UL122 and UL123, the early gene UL44, and the late gene UL32 were the same in RVAd65-infected cells as in wild-type virus-infected cells in immunoblot analyses. In vitro phosphorylation assays showed that some of the virion proteins were labelled to a markedly reduced extent by virion-associated kinases in RVAd65 compared with wild-type virus. We therefore conclude that although deletion of the pp65 gene does not abolish replication of HCMV, a recombinant virus lacking pp65 displays phenotypic alterations compared with wild-type virus during growth in cultured fibroblasts.  相似文献   

3.
The assembly of human cytomegalovirus (HCMV) is thought to be similar to that which has been proposed for alphaherpesviruses and involve envelopment of tegumented subviral particles at the nuclear membrane followed by export from the cell by a poorly defined pathway. However, several studies have shown that at least two tegument virion proteins remain in the cytoplasm during the HCMV replicative cycle, thereby suggesting that HCMV cannot acquire its final envelope at the nuclear envelope. We investigated the assembly of HCMV by determining the intracellular trafficking of the abundant tegument protein pp150 (UL32) in productively infected human fibroblasts. Our results indicated that pp150 remained within the cytoplasm throughout the replicative cycle of HCMV and accumulated in a stable, juxtanuclear structure late in infection. Image analysis using a variety of cell protein-specific antibodies indicated that the pp150-containing structure was not a component of the endoplasmic reticulum, (ER), ER-Golgi intermediate compartment, cis or medial Golgi, or lysosomes. Partial colocalization of the structure was noted with the trans-Golgi network, and it appeared to lie in close proximity to the microtubule organizing center. Two additional tegument proteins (pp28 and pp65) and three envelope glycoproteins (gB, gH, and gp65) localized in this same structure late infection. This compartment appeared to be relatively stable since pp150, pp65, and the processed form of gB could be coisolated following cell fractionation. Our findings indicated that pp150 was expressed exclusively within the cytoplasm throughout the infectious cycle of HCMV and that the accumulation of the pp150 in this cytoplasmic structure was accompanied by at least five other virion proteins. These results suggested the possibility that this virus-induced structure represented a cytoplasmic site of virus assembly.  相似文献   

4.
5.
Human cytomegalovirus (HCMV) replicates in the nuclei of infected cells. Successful replication therefore depends on particle movements between the cell cortex and nucleus during entry and egress. To visualize HCMV particles in living cells, we have generated a recombinant HCMV expressing enhanced green fluorescent protein (EGFP) fused to the C terminus of the capsid-associated tegument protein pUL32 (pp150). The resulting UL32-EGFP-HCMV was analyzed by immunofluorescence, electron microscopy, immunoblotting, confocal microscopy, and time-lapse microscopy to evaluate the growth properties of this virus and the dynamics of particle movements. UL32-EGFP-HCMV replicated similarly to wild-type virus in fibroblast cultures. Green fluorescent virus particles were released from infected cells. The fluorescence stayed associated with particles during viral entry, and fluorescent progeny particles appeared in the nucleus at 44 h after infection. Surprisingly, strict colocalization of pUL32 and the major capsid protein pUL86 within nuclear inclusions indicated that incorporation of pUL32 into nascent HCMV particles occurred simultaneously with or immediately after assembly of the capsid. A slow transport of nuclear particles towards the nuclear margin was demonstrated. Within the cytoplasm, most particles performed irregular short-distance movements, while a smaller fraction of particles performed centripetal and centrifugal long-distance movements. Although numerous particles accumulated in the cytoplasm, release of particles from infected cells was a rare event, consistent with a release rate of about 1 infectious unit per h per cell in HCMV-infected fibroblasts as calculated from single-step growth curves. UL32-EGFP-HCMV will be useful for further investigations into the entry, maturation, and release of this virus.  相似文献   

6.
Maturation of human cytomegalovirus (HCMV) initiates with nucleocapsids that egress from the nucleus and associate with a juxtanuclear cytoplasmic assembly compartment, where virion envelopment and release are orchestrated. Betaherpesvirus conserved proteins pp150 (encoded by UL32) and pUL96 are critical for HCMV growth in cell culture. pp150 is a capsid-proximal tegument protein that preserves the integrity of nucleocapsids during maturation. pUL96, although expressed as an early protein, acts late during virus maturation, similar to pp150, based on the comparable antigen distribution in UL96, UL32, or UL96/UL32 dual mutant virus-infected cells. pp150 associates with nuclear capsids prior to DNA encapsidation, whereas both pp150 and pUL96 associate with extracellular virus, suggesting that pUL96 is added after pp150. In the absence of pUL96, capsid egress from the nucleus continues; however, unlike wild-type virus infection, pp150 accumulates in the nuclear, as well as in the cytoplasmic, compartment. Ultrastructural evaluation of a UL96 conditional mutant revealed intact nuclear stages but aberrant nucleocapsids accumulating in the cytoplasm comparable to the known phenotype of UL32 mutant virus. In summary, pUL96 preserves the integrity of pp150-associated nucleocapsids during translocation from the nucleus to the cytoplasm.  相似文献   

7.
8.
为了构建人巨细胞病毒(HCMV)截短UL83基因真核表达重组体,实现其在Hep-2细胞中的稳定表达,研究该截短UL83基因真核表达重组体免疫效力,采用基因重组的方法,将HCMV AD169株截短UL83基因定向克隆到带有绿色荧光蛋白(GFP)作为报告基因的真核表达载体pEGFP-C1上,构建真核重组表达质粒pEGFP-C1-UL83;脂质体转染至Hep-2细胞中,G418筛选获得稳定表达pp65细胞表达系。经基因测序显示,重组体中截短UL83基因完全正确,RT-PCR和Western blot检测证实其可在Hep-2细胞中稳定表达。用该重组体和其表达产物在HCMV先天性感染小鼠模型上进行免疫保护试验显示,母鼠血清可检测到特异性抗HCMV pp65抗体,效价为:1∶2.51~1∶50.79;子鼠脑组织内未分离出病毒,亦未检测出病毒pp65蛋白抗原表达。初步结果表明,pEGFP-C1-UL83具有较好的免疫原性,可作为DNA疫苗刺激机体产生有效抗体,并具有阻止病毒垂直传播的保护性作用。  相似文献   

9.
人巨细胞病毒(HCMV)感染是临床上常见的一种病毒性传播疾病,正常人群常无明显的临床症状,而对器官移植患者、免疫力低下及孕妇等人可产生严重的危害。以HCMVAD169病毒株基因为模板,经PCR扩增了编码pp150蛋白片段的UL32基因和编码MDBP蛋白片段的UL57基因,目的基因转化入pMD18-T克隆载体后再经酶切与表达载体pET-11a连接构建出融合基因表达载体,然后转入大肠杆菌BL21,重组大肠杆菌经诱导表达融合蛋白pp150/MDBP。经SDS-PAGE分析,其相对分子量约为27kD,表达量约占菌体蛋白的17.45%,Westernblot鉴定为阳性,ELISA及蛋白芯片检测表明融合蛋白具有良好的抗原性,经过初步应用表明其对血清IgG及IgM的检出率与全抗原相比一致,具有进一步开发应用的价值。  相似文献   

10.
B A Wing  G C Lee    E S Huang 《Journal of virology》1996,70(6):3339-3345
In this report, we provide a detailed characterization of the human cytomegalovirus (HCMV) UL94 gene product. Northern (RNA) blot analysis of infected cell RNA demonstrated that UL94 message was found only at late times of infection and was not synthesized in the presence of the viral DNA replication inhibitor ganciclovir. Expression of the UL94 open reading frame in vitro and in vivo yielded a protein with the predicted molecular mass of 36 kDa. A monoclonal antibody raised to a UL94-specific peptide reacted specifically with a 36-kDa protein in HCMV-infected fibroblasts. This protein was found only at late times of infection and was also present in purified HCMV virions. Fractionation of purified virions and HCMV-infected cells revealed an association of UL94 immunoreactivity with the capsid/tegument and nuclear fractions, respectively. The evolutionary conservation of UL94 protein sequence and an analysis of potential functional regions of the protein are discussed.  相似文献   

11.
12.
The tegument protein pp71 (UL82) of human cytomegalovirus (HCMV) has previously been shown to transactivate the major immediate-early enhancer-promoter of HCMV. Furthermore, this protein is able to enhance the infectivity of viral DNA and to accelerate the infection cycle, suggesting an important regulatory function during viral replication. To gain insight into the underlying mechanisms that are used by pp71 to exert these pleiotropic effects, we sought for cellular factors interacting with pp71 in a yeast two-hybrid screen. Here, we report the isolation of the human Daxx (hDaxx) protein as a specific interaction partner of HCMV pp71. hDaxx, which was initially described as an adapter protein involved in apoptosis regulation, has recently been identified as a nuclear protein that interacts and colocalizes with PML in the nuclear domain ND10. In order to assess whether pp71 can also be detected in ND10 structures, a vector expressing pp71 in fusion with the green fluorescent protein was used for transfection of human fibroblasts. This revealed a colocalization of pp71 with the ND10 proteins PML and Sp100. In addition, cotransfection of a hDaxx expression vector resulted in an enhanced recruitment of pp71 to ND10. Targeting of pp71 to nuclear dots could also be observed in infected human fibroblasts in the absence of de novo viral protein synthesis. Moreover, cotransfection experiments revealed that pp71-mediated transactivation of the major immediate-early enhancer-promoter was synergistically enhanced in the presence of hDaxx. These results suggest an important role of hDaxx for pp71 protein function.  相似文献   

13.
Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.  相似文献   

14.
The temporal expression of the UL97 gene product during human cytomegalovirus (HCMV) infection of human foreskin fibroblasts (HFF) and subcellular localization of this protein were analyzed by using a polyclonal antiserum raised against a truncated UL97 protein of 47 kDa. The UL97 protein was detectable 16 h after infection by Western blot (immunoblot) analysis. Since only reduced UL97 expression occurred in the presence of two inhibitors of DNA replication, phosphonoacetic acid and ganciclovir, we conclude that UL97 is an early-late gene, requiring DNA replication for maximum expression. By indirect immunofluorescence, the protein could be visualized in the nuclei of virus-infected HFF 22 h after infection. Nuclear localization of the UL97 protein was also detected in thymidine kinase-deficient 143B cells infected with a recombinant vaccinia virus containing the entire UL97 open reading frame (ORF), as well as in HFF transiently expressing the entire UL97 ORF under the control of HCMV major immediate-early promoter. However, transiently expressed 5'-terminal deletion mutants of the UL97 ORF in addition showed a cytoplasmic localization of the UL97 protein, confirming the presence of a nuclear localization site in the N-terminal region of the protein. Our high-pressure liquid chromatography analyses confirmed the ganciclovir phosphorylation by the UL97 protein, but no specific phosphorylation of natural nucleosides was observed, indicating that the UL97 protein is not a nucleoside kinase. During plaque purification of recombinant UL97-deficient HCMV, this virus was growth defective; hence, we presume that UL97 may be essential for the viral life cycle.  相似文献   

15.
16.
17.
Many of the events required for productive herpes simplex virus type 1 (HSV-1) infection occur within globular nuclear domains called replication compartments, whose formation appears to depend on interactions with cellular nuclear domains 10 (ND10). We have previously demonstrated that the formation of HSV-1 replication compartments involves progression through several stages, including the disruption of intact ND10 (stage I to stage II) and the formation of PML-associated prereplicative sites (stage III) and replication compartments (stage IV) (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). In this paper, we show that some, but not all, PML isoforms are recruited to stage III foci and replication compartments. Genetic experiments showed that the recruitment of PML isoforms to stage III prereplicative sites and replication compartments requires the localization of the HSV-1 polymerase protein (UL30) to these foci but does not require polymerase catalytic activity. We also examined the stages of viral infection under conditions affecting ND10 integrity. Treatment with factors that increase the stability of ND10, arsenic trioxide and the proteasome inhibitor MG132, inhibited viral disruption of ND10, formation of replication compartments, and production of progeny virus. These results strengthen the previously described correlation between ND10 disruption and productive viral infection.  相似文献   

18.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) DNA replication is associated with nuclear domains called ND10, which contain host recombination proteins such as RPA, RAD51, and NBS1 and participate in the cell's response to DNA damage. The stages of HSV-1 infection have been described previously. Infected cells at stage IIIa are observed after the initial disruption of ND10 and display nuclear foci, or prereplicative sites, containing the viral single-stranded-DNA-binding protein (UL29), the origin-binding protein (UL9), and the heterotrimeric helicase-primase. At stage IIIb, the viral polymerase, its processivity factor, and the ND10, protein PML, are also recruited to these sites. In this work, RPA, RAD51, and NBS1 were observed predominantly in stage IIIb but not stage IIIa prereplicative sites, suggesting that the efficient recruitment of these recombination proteins is dependent on the presence of the viral polymerase and other replication proteins within these sites. On the other hand, Ku86 was not found in any of the precursors to replication compartments, suggesting that it is excluded from the early stages of HSV-1 replication. Western blot analysis showed that RPA and NBS1 were (hyper)phosphorylated during infection, indicating that infection induces the host response to DNA damage. Finally, RPA, RAD51, and NBS1 were found to be associated with UL29 foci observed in transfected cells expressing UL29 and the helicase-primase heterotrimer and containing intact ND10. The ability to recruit recombination and repair proteins to various subassemblies of viral replication proteins thus appears to depend on several factors, including the presence of the viral polymerase and/or UL9 within prereplicative sites and the integrity of ND10.  相似文献   

20.
人巨细胞病毒(human cytomegalovirus, HCMV)种属特异性机制尚不清楚。研究通过检测HCMVADl69体外感染人胚胎成纤维细胞(Human embryo fibroblast, HEF)和小鼠胚胎成纤维细胞(mouse embryo fibroblast, MEF)后病毒基因的表达情况,探讨HCMV种属特异性的可能分子机制。首先用HCMV AD169(MOI=5)分别感染HEF和MEF,相差显微镜逐日观察细胞的形态学变化;RT—PCR检测HCMV即刻早期(IE1、IE2)、早期(uL84)和晚期基因(UL83)的表达情况;Western—blot和免疫荧光检测病毒基因编码蛋白表达的情况。形态学观察发现HEF感染HCMV后逐渐变大变圆并相互融合,第4天可见典型的HCMV特征性病变效应,而MEF则未出现上述的变化;RT-PCR和Western—blot表明HEF组表达即刻早期基因IE1和IE2、早期基因uL84和晚期基因UL83 mRNA以及各基因所编码的蛋白,且相对表达量显著高于模拟感染组(P〈0.01);而MEF组仅IEl和IE2mRNA和蛋白相对表达量显著低于HEF组(P〈0.05),而高于模拟感染组(P〈0.01)。免疫荧光检测发现HEF感染72h表达IE和UL83蛋白,而MEF则无明显表达。以上结果表明,HC—MV不能在MEF中复制并产生完整子代病毒颗粒,且病毒基因表达阻止在IE2基因表达之后和UL84基因表达之前,其种属特异性可能与即刻早期蛋白低水平的表达量有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号