首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   

2.
This paper investigates the relationship between vascular plant production and CH4 emissions from an arctic wet tundra ecosystem in north‐east Greenland. Light intensity was manipulated by shading during three consecutive growing seasons (1998–2000). The shading treatment resulted in lower carbon cycling in the ecosystem as mean seasonal net ecosystem exchange (NEE) decreased from ?336 to ?196 mg CO2 m?2 h?1 and from ?476 to ?212 mg CO2 m?2 h?1 in 1999 and 2000, respectively, and total ecosystem respiration decreased from 125 to 94 mg CO2 m?2 h?1 in 1999 and from 409 to 306 mg CO2 m?2 h?1 in 2000. Seasonal mean CH4 emissions in controls and shaded plots were, respectively, 6.5 and 4.5 mg CH4 m?2 h?1 in 1999 and 8.3 and 6.2 mg CH4 m?2 h?1 in 2000. We found that CH4 emission was sensitive to NEE and carbon turnover, and it is reasonable to assume that the correlation was due to a combined effect of vegetative CH4 transport and substrate quality coupled to vascular plant production. Total above‐ground biomass was correlated to mean seasonal CH4 emission, but separation into species showed that plant‐mediated CH4 transport was highly species dependent. Potential CH4 production peaked at the same depth as maximum root density (5–15 cm) and treatment differences further suggest that substrate quality was negatively affected by decreased NEE in the shaded plots. The concentration of dissolved CH4 decreased in the control plots as the growing season progressed while it was relatively stable in the shaded plots. This suggests that a progressively better developed root system in the controls increased the capacity to transport CH4 from the soil to the atmosphere. In conclusion, vascular plant photosynthetic rate and subsequent allocation of recently fixed carbon to below‐ground structures seemed to influence both vegetative CH4 transport and substrate quality.  相似文献   

3.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

4.
Herbivory is an important part of most ecosystems, and grazing alone can have a considerable impact on the ecosystems carbon balance with both direct and indirect effects. Removal of above-ground biomass by consumption of herbivores will change the below-ground carbon stock; the reduction of litter that goes into the ground will influence the total ecosystem carbon content. Little is however known about how plant-herbivory interactions effect the carbon balance, in particular methane emissions, of high arctic mires. We hypothesized that increased grazing pressure will change carbon allocation patterns resulting in decreased net ecosystem uptake of carbon and subsequently in lower methane emissions. An in-situ field experiment was conducted over 3 years in a high arctic mire at Zackenberg in NE Greenland. The experiment consisted of three treatments, with five replicates of each (1) control, (2) vascular plants were removed (NV), (3) clipped twice each growing season in order to simulate increased muskox grazing. Immediately after the initiation of the experiment net ecosystem uptake of CO2 decreased in clipped plots (mean total decrease for the three following years was 35 %). One year into the experiment a significantly lower CH4 emission was observed in these plots, the total mean reduction for the following 2 years was 26 %. Three years into the experiment significantly lower substrate (acetic acid) availability for CH4 production was observed (27 % reduction). NV plots had a mean decrease in CO2 uptake of 113 %, a 62 % decrease in ecosystem respiration and an 84 % decrease in CH4 emission (mean of all 3 years). Our study shows that increased grazing pressure in a high arctic mire can lead to significant changes in the carbon balance, with lower CO2 uptake leading to lower production of substrate for CH4 formation and in lower CH4 emission.  相似文献   

5.
Tropical peatlands hold about 15%–19% of the global peat carbon (C) pool of which 77% is stored in the peat swamp forests (PSFs) of Southeast Asia. Nonetheless, these PSFs have been drained, exploited for timber and land for agriculture, leading to frequent fires in the region. The physico‐chemical characteristics of peat, as well as the hydrology of PSFs are affected after a fire, during which the ecosystem can act as a C source for decades, as C emissions to the atmosphere exceed photosynthesis. In this work, we studied the longer‐term impact of fires on C cycling in tropical PSFs, hence we quantified the magnitude and patterns of C loss (CO2, CH4 and dissolved organic carbon) and soil‐water quality characteristics in an intact and a degraded burnt PSF in Brunei Darussalam affected by seven fires over the last 40 years. We used natural tracers such as 14C to investigate the age and sources of C contributing to ecosystem respiration (Reco) and CH4, while we continuously monitored soil temperature and water table (WT) level from June 2017 to January 2019. Our results showed a major difference in the physico‐chemical parameters, which in turn affected C dynamics, especially CH4. Methane effluxes were higher in fire‐affected areas (7.8 ± 2.2 mg CH4 m?2 hr?1) compared to the intact PSF (4.0 ± 2.0 mg CH4 m?2 hr?1) due to prolonged higher WT and more optimal methanogenesis conditions. On the other hand, we did not find significant differences in Reco between burnt (432 ± 83 mg CO2 m?2 hr?1) and intact PSF (359 ± 76 mg CO2 m?2 hr?1). Radiocarbon analysis showed overall no significant difference between intact and burnt PSF with a modern signature for both CO2 and CH4 fluxes implying a microbial preference for the more labile C fraction in the peat matrix.  相似文献   

6.
Species composition affects the carbon turnover and the formation and emission of the greenhouse gas methane (CH4) in wetlands. Here we investigate the individual effects of vascular plant species on the carbon cycling in a wetland ecosystem. We used a novel combination of laboratory methods and controlled environment facilities and studied three different vascular plant species (Eriophorum vaginatum, Carex rostrata and Juncus effusus) collected from the same wetland in southern Sweden. We found distinct differences in the functioning of these wetland sedges in terms of their effects on carbon dioxide (CO2) and CH4 fluxes, bubble emission of CH4, decomposition of 14C-labelled acetate into 14CH4 and 14CO2, rhizospheric oxidation of CH4 to CO2 and stimulation of methanogenesis through root exudation of substrate (e.g., acetate). The results show that the emission of CH4 from peat–plant monoliths was highest when the vegetation was dominated by Carex (6.76 mg CH4 m−2 h−1) than when it was dominated by Eriophorum (2.38 mg CH4 m−2 h−1) or Juncus (2.68 mg CH4 m−2 h−1). Furthermore, the CH4 emission seemed controlled primarily by the degree of rhizospheric CH4 oxidation which was between 20 and 40% for Carex but >90% for both the other species. Our results point toward a direct and very important linkage between the plant species composition and the functioning of wetland ecosystems and indicate that changes in the species composition may alter important processes relating to controls of and interactions between greenhouse gas fluxes with significant implications for feedback mechanisms in a changing climate as a result.  相似文献   

7.
Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits of lower CO2 emissions without losing agricultural land. This study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different groundwater levels (GWLs), that is 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions was measured during the growing period of RCG (May to September) using transparent and opaque closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha?1) than drained peat soils (15 Mg ha?1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than from drained peat soils, but net uptake of CO2 was higher from rewetted peat soils. Cumulative CH4 emissions were negligible (0.01 g CH4 m?2) from drained peat soils but were significantly higher (4.9 g CH4 m?2) from rewetted peat soils during measurement period (01 May–15 September 2013). The extrapolated annual C balance was 0.03 and 0.68 kg C m?2 from rewetted and drained peat soils, respectively, indicating that rewetting and paludiculture can reduce the loss of carbon from peatlands.  相似文献   

8.
Wetlands are the largest source of methane (CH4) globally, yet our understanding of how process‐level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2) and CH4 fluxes by eddy covariance from two wetlands recently restored on peat and alluvium soils within the Sacramento–San Joaquin Delta of California. Annual CH4 fluxes from the alluvium wetland were significantly lower than the peat site for multiple years following restoration, but these differences were not explained by variation in dominant climate drivers or productivity across wetlands. Soil iron (Fe) concentrations were significantly higher in alluvium soils, and alluvium CH4 fluxes were decoupled from plant processes compared with the peat site, as expected when Fe reduction inhibits CH4 production in the rhizosphere. Soil carbon content and CO2 uptake rates did not vary across wetlands and, thus, could also be ruled out as drivers of initial CH4 flux differences. Differences in wetland CH4 fluxes across soil types were transient; alluvium wetland fluxes were similar to peat wetland fluxes 3 years after restoration. Changing alluvium CH4 emissions with time could not be explained by an empirical model based on dominant CH4 flux biophysical drivers, suggesting that other factors, not measured by our eddy covariance towers, were responsible for these changes. Recently accreted alluvium soils were less acidic and contained more reduced Fe compared with the pre‐restoration parent soils, suggesting that CH4 emissions increased as conditions became more favorable to methanogenesis within wetland sediments. This study suggests that alluvium soil properties, likely Fe content, are capable of inhibiting ecosystem‐scale wetland CH4 flux, but these effects appear to be transient without continued input of alluvium to wetland sediments.  相似文献   

9.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

10.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   

11.
The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content (14C) of dissolved organic carbon (DOC), carbon dioxide (CO2), and methane (CH4) exported from a boreal peatland catchment coupled with 14C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (<60 years), despite stream DOC, CO2, and CH4 primarily being sourced from deep peat horizons (2–4 m) near the mire's outlet. In fact, the 14C content of DOC, CO2, and CH4 across the entire peat profile was considerably enriched with postbomb C compared with the solid peat material. Overall, our results demonstrate little to no mobilization of ancient C stocks from this boreal peatland and a relatively large resilience of the source of aquatic C export to forecasted hydroclimatic changes.  相似文献   

12.
Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m?2 yr?1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha?1 yr?1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.  相似文献   

13.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

14.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

15.
Anaerobic bacterial degradation of landfill waste produces a globally significant source of the greenhouse gas methane. Stable isotopic measurements of methane [δI3C(CH4) and δD(CH4)] can often fingerprint different sources of methane (natural vs. anthro‐pogenic) and help identify the bacterial processes involved in methane production. Landfill microbial communities are complex and diverse, and hence so too is the biogeochem‐istry of methane formation. To investigate the influence of (l) the methane formation pathway (acetoclastic methanogenesis and CO2 reduction), and (2) SD of water on the stable isotopic composition of landfill methane, two model butyrate‐degrading landfill systems were established. The systems were inoculated with domestic refuse from a landfill and incubated in the laboratory for 92 days. Both systems were identical except δD of water initially added to system 2 was 118% heavier than system 1. Between days 39 and 72 the systems were resupplemented with butyrate. Production of CH4 and CO2 and changes in volatile fatty acid concentration confirmed that active methanogenic populations had been established. CH4 became 13C enriched in both incubations with time. Interpreting changes in acetate, butyrate, and propionate concentration during incubation is complicated, but these observations and other information suggest that the dominant methanogenic substrate changed front CO2/H2 to acetate as the experiment progressed. This is also consistent with the observed 13C enrichment of CH4, as 13C discrimination during methane production from acetate is less than from CO2. In contrast, δD(CH4) remained relatively constant, suggesting that this measurement may not provide a reliable basis for distinguishing between CH4 from CO2 reduction and acetoclastic methanogenesis, as has previously been suggested.  相似文献   

16.
Hot spots of CH4 emissions are a typical feature of pristine peatlands at the microsite and landscape scale. To determine whether rewetting and lake construction in a cutaway peatland would result in the re‐creation of hot spots, we first measured CH4 fluxes over a 2‐year period with static chambers and estimated annual emissions. Second, to assess whether rewetting and lake creation would produce hot spots at the landscape level, we hypothesized a number of alternative land use scenarios for the peatland following the cessation of peat extraction. Using the results from this study and other studies from literature, we calculated the global warming potential (GWP) of each scenario and the respective contribution of CH4. The results showed that hot spots of CH4 fluxes were observed as a consequence of microsite‐specific differences in water table (WT) position and plant productivity. CH4 fluxes were closely related to peat temperature at 10 cm depth and WT position. Annual emissions ranged from 4.3 to 38.8 g CH4 m?2 yr?1 in 2002 and 3.2 to 28.8 g CH4 m?2 yr?1 in 2003. The scenario results suggest that lake creation is likely to result in the re‐creation of a hot spot at the landscape level. However, the transition from cutaway to wetland ecosystem may lead to a reduction in the GWP of the peatland.  相似文献   

17.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

18.
Climate change will directly affect carbon and nitrogen mineralization through changes in temperature and soil moisture, but it may also indirectly affect mineralization rates through changes in soil quality. We used an experimental mesocosm system to examine the effects of 6‐year manipulations of infrared loading (warming) and water‐table level on the potential anaerobic nitrogen and carbon (as carbon dioxide (CO2) and methane (CH4) production) mineralization potentials of bog and fen peat over 11 weeks under uniform anaerobic conditions. To investigate the response of the dominant methanogenic pathways, we also analyzed the stable isotope composition of CH4 produced in the samples. Bog peat from the highest water‐table treatment produced more CO2 than bog peat from drier mesocosms. Fen peat from the highest water‐table treatment produced the most CH4. Cumulative nitrogen mineralization was lowest in bog peat from the warmest treatment and lowest in the fen peat from the highest water‐table treatment. As all samples were incubated under constant conditions, observed differences in mineralization patterns reflect changes in soil quality in response to climate treatments. The largest treatment effects on carbon mineralization as CO2 occurred early in the incubations and were ameliorated over time, suggesting that the climate treatments changed the size and/or quality of a small labile carbon pool. CH4 from the fen peat appeared to be predominately from the acetoclastic pathway, while in the bog peat a strong CH4 oxidation signal was present despite the anaerobic conditions of our incubations. There was no evidence that changes in soil quality have lead to differences in the dominant methanogenic pathways in these systems. Overall, our results suggest that even relatively short‐term changes in climate can alter the quality of peat in bogs and fens, which could alter the response of peatland carbon and nitrogen mineralization to future climate change.  相似文献   

19.
We investigated the effects of oxygen (O2) concentration on methane (CH4) production and oxidation in two humid tropical forests that differ in long‐term, time‐averaged soil O2 concentrations. We identified sources and sinks of CH4 through the analysis of soil gas concentrations, surface emissions, and carbon isotope measurements. Isotope mass balance models were used to calculate the fraction of CH4 oxidized in situ. Complementary laboratory experiments were conducted to determine the effects of O2 concentration on gross and net rates of methanogenesis. Field and laboratory experiments indicated that high levels of CH4 production occurred in soils that contained between 9±1.1% and 19±0.2% O2. For example, we observed CH4 concentrations in excess of 3% in soils with 9±1.1% O2. CH4 emissions from the lower O2 sites were high (22–101 nmol CH4 m?2 s?1), and were equal in magnitude to CH4 emissions from natural wetlands. During peak periods of CH4 efflux, carbon dioxide (CO2) emissions became enriched in 13C because of high methanogenic activity. Gross CH4 production was probably greater than flux measurements indicated, as isotope mass balance calculations suggested that 48–78% of the CH4 produced was oxidized prior to atmospheric egress. O2 availability influenced CH4 oxidation more strongly than methanogenesis. Gross CH4 production was relatively insensitive to O2 concentrations in laboratory experiments. In contrast, methanotrophic bacteria oxidized a greater fraction of total CH4 production with increasing O2 concentration, shifting the δ13C composition of CH4 to values that were more positive. Isotopic measurements suggested that CO2 was an important source of carbon for methanogenesis in humid forests. The δ13C value of methanogenesis was between ?84‰ and ?98‰, which is well within the range of CH4 produced from CO2 reduction, and considerably more depleted in 13C than CH4 formed from acetate.  相似文献   

20.
Ammonia accumulation is a major inhibitory substance causing anaerobic digestion upset and failure in CH4 production. At high ammonia levels, CH4 production through syntrophic acetate oxidization (SAO) pathways is more tolerant to ammonia toxicity than the acetoclastic methanogenesis pathway, but the low CH4 production rate through SAO constitutes the main reason for the low efficiency of energy recovery in anaerobic digesters treating ammonia‐rich substrates. In this study, we showed that acetate fermentation to CH4 and CO2 occurred through SAO pathway in the anaerobic reactors containing a high ammonia concentration (5.0 g l?1 NH4+–N), and the magnetite nanoparticles supplementation increased the CH4 production rates from acetate by 36–58%, compared with the anaerobic reactors without magnetite under the same ammonia level. The mechanism of facilitated methanogenesis was proposed to be the establishment of direct interspecies electron transfer (DIET) for SAO, in which magnetite facilitated DIET between syntrophic acetate oxidizing bacteria and methanogens. High‐throughput 16S rRNA gene sequencing analysis revealed that the bacterial Geobacteraceae and the archaeal Methanosarcinaceae and Methanobacteriaceae might be involved in magnetite‐mediated DIET for SAO and CH4 production. This study demonstrated that magnetite supplementation might provide an effective approach to accelerate CH4 production rates in the anaerobic reactors treating wastewater containing high ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号