首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Archaeal Community Structure and Pathway of Methane Formation on Rice Roots   总被引:8,自引:0,他引:8  
The community structure of methanogenic Archaea on anoxically incubated rice roots was investigated by amplification, sequencing, and phylogenetic analysis of 16S rRNA and methyl-coenzyme M reductase (mcrA) genes. Both genes demonstrated the presence of Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Rice cluster I, an uncultured methanogenic lineage. The pathway of CH4 formation was determined from the 13C-isotopic signatures of the produced CH4, CO2 and acetate. Conditions and duration of incubation clearly affected the methanogenic community structure and the pathway of CH4 formation. Methane was initially produced from reduction of CO2 exclusively, resulting in accumulation of millimolar concentrations of acetate. Simultaneously, the relative abundance of the acetoclastic methanogens (Methanosarcinaceae, Methanosaetaceae), as determined by T-RFLP analysis of 16S rRNA genes, was low during the initial phase of CH4 production. Later on, however, acetate was converted to CH4 so that about 40% of the produced CH4 originated from acetate. Most striking was the observed relative increase of a population of Methanosarcina spp. (but not of Methanosaeta spp.) briefly before acetate concentrations started to decrease. Both acetoclastic methanogenesis and Methanosarcina populations were suppressed by high phosphate concentrations, as observed under application of different buffer systems. Our results demonstrate the parallel change of microbial community structure and function in a complex environment, i.e., the increase of acetoclastic Methanosarcina spp. when high acetate concentrations become available.  相似文献   

2.
Among predicted impacts of climate change in the Arctic are greater thaw depth and shifts in vegetation patterns and hydrology that are likely to increase organic carbon and nutrient loading to lakes. We measured substrate limitation of sediment methane (CH4) flux, examined pathways of methanogenesis, and potential CH4 oxidation using stable isotope labeled acetate in intact sediment cores from arctic lake GTH 112 (68°40′20″N, 149°14′57″W). We hypothesized that the acetoclastic pathway would dominate methanogenesis, reflecting dissolved organic carbon supply from the surrounding landscape, and that sediment CH4 flux would be stimulated by addition of acetate. Experiments demonstrated acetate limitation of sediment CH4 flux with short-term CH4 flux response to availability of acetate, high rates of CH4 oxidation, and strong dominance of the acetoclastic over the hydrogenotrophic methanogenic pathway. The experiments also indicated that isotopic fractionation effects during isotope enrichment experiments are large during methanogenesis and can alter the methanogenic pathways being investigated. Under oxic conditions, CH4 oxidation at the sediment–water interface or in the water column is likely to account for much of diffusive CH4 flux, but under anoxic hypolimnetic conditions and increased substrate availability, conditions that are likely to occur with climate change, sediment CH4 flux will likely increase, with oxidation utilizing a smaller portion of sediment CH4 production.  相似文献   

3.
The microbial community in anoxic rice field soil produces CH4 over a wide temperature range up to 55°C. However, at temperatures higher than about 40°C, the methanogenic path changes from CH4 production by hydrogenotrophic plus acetoclastic methanogenesis to exclusively hydrogenotrophic methanogenesis and simultaneously, the methanogenic community consisting of Methanosarcinaceae, Methanoseataceae, Methanomicrobiales, Methanobacteriales and Rice Cluster I (RC‐1) changes to almost complete dominance of RC‐1. We studied changes in structure and function of the methanogenic community with temperature to see whether microbial members of the community were lost or their function impaired by exposure to high temperature. We characterized the function of the community by the path of CH4 production measuring δ13C in CH4 and CO2 and calculating the apparent fractionation factor (αapp) and the structure of the community by analysis of the terminal restriction fragment length polymorphism (T‐RFLP) of the microbial 16S rRNA genes. Shift of the temperature from 45°C to 35°C resulted in a corresponding shift of function and structure, especially when some 35°C soil was added to the 45°C soil. The bacterial community (T‐RFLP patterns), which was much more diverse than the archaeal community, changed in a similar manner upon temperature shift. Incubation of a mixture of 35°C and 50°C pre‐incubated methanogenic rice field soil at different temperatures resulted in functionally and structurally well‐defined communities. Although function changed from a mixture of acetoclastic and hydrogenotrophic methanogenesis to exclusively hydrogenotrophic methanogenesis over a rather narrow temperature range of 42–46°C, each of these temperatures also resulted in only one characteristic function and structure. Our study showed that temperature conditions defined structure and function of the methanogenic microbial community.  相似文献   

4.
Carbon-bearing compounds (glucose, sodium acetate, methanol, yeast extract, and nutrient broth) were added in different proportions to cultures to stimulate methanogenesis in a lignite incubation experiment. Their addition significantly influenced the isotopic composition of methane generated during the fermentation of lignite. Glucose was degraded mainly in the first 2 weeks of incubation, when the atmospheric air was present in the headspace and used for biomass growth. Sodium acetate, methanol, and, presumably, lignite were decomposed in the next phase, in which anaerobic conditions occurred. The simultaneous decomposition of sodium acetate and methanol (as single substrates or as a mixture) with lignite resulted in the formation of methane with δ13C(CH4) values typical for methyl-type fermentation. The identification of decomposed compounds in the mixture of sodium acetate and methanol was accomplished via isotopic analysis of carbon and hydrogen in the methane. The δ2H(CH4) values in the case of methanol biodegradation were characterized by a negative trend over time, in contrast to a positive trend observed when sodium acetate decomposed. This observation may help to identify a very good tracer for the determination of methane precursors during methyl-type fermentation.  相似文献   

5.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

6.
Methanogenic processes can be quantified by stable carbon isotopes, if necessary modeling parameters, especially fractionation factors, are known. Anoxically incubated rice roots are a model system with a dynamic microbial community and thus suitable to investigate principal geochemical processes in anoxic natural systems. Here we applied an inhibitor of acetoclastic methanogenesis (methyl fluoride), calculated the thermodynamics of the involved processes, and analyzed the carbon stable isotope signatures of CO2, CH4, propionate, acetate and the methyl carbon of acetate to characterize the carbon flow during anaerobic degradation of rice roots to the final products CO2 and CH4. Methyl fluoride inhibited acetoclastic methanogenesis and thus allowed to quantify the fractionation factor of CH4 production from H2/CO2. Since our model system was not affected by H2 gradients, the fractionation factor could alternatively be determined from the Gibbs free energies of hydrogenotrophic methanogenesis. The fractionation factor of acetoclastic methanogenesis was also experimentally determined. The data were used for successfully modeling the carbon flow. The model results were in agreement with the measured process data, but were sensitive to even small changes in the fractionation factor of hydrogenotrophic methanogenesis. Our study demonstrates that stable carbon isotope signatures are a proper tool to quantify carbon flow, if fractionation factors are determined precisely.  相似文献   

7.
Methanosarcina barkeri was cultured on methanol, H2-CO2, and acetate, and the 13C/12C ratios of the substrates and the methane produced from them were determined. The discrimination against 13C in methane relative to substrate decreased in the order methanol > CO2 > acetate. The isotopic fractionation for methane derived from acetate was only one-third of that observed with methanol as the substrate. The data presented indicate that the last enzyme of methanogenesis, methylreductase, is not the primary site of isotopic discrimination during methanogenesis from methanol or CO2. These results also support biogeochemical interpretations that gas produced in environments in which acetate is the primary methane precursor will have higher 13C/12C ratios than those from environments where other substrates predominate.  相似文献   

8.
This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time.  相似文献   

9.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

10.
Flooded rice fields, which are an important source of the atmospheric methane, have become a model system for the study of interactions between various microbial processes. We used a combination of stable carbon isotope measurements and application of specific inhibitors in order to investigate the importance of various methanogenic pathways and of CH4 oxidation for controlling CH4 emission. The fraction of CH4 produced from acetate and H2/CO2 was calculated from the isotopic signatures of acetate, carbon dioxide (CO2) and methane (CH4) measured in porewater, gas bubbles, in the aerenchyma of the plants and/or in incubation experiments. The calculated ratio between both pathways reflected well the ratio determined by application of methyl fluoride (CH3F) as specific inhibitor of acetate‐dependent methanogenesis. Only at the end of the season, the theoretical ratio of acetate: H2 = 2 : 1 was reached, whereas at the beginning H2/CO2‐dependent methanogenesis dominated. The isotope discrimination was different between rooted surface soil and unrooted deep soil. Root‐associated CH4 production was mainly driven by H2/CO2. Porewater CH4 was found to be a poor proxy for produced CH4. The fraction of CH4 oxidised was calculated from the isotopic signature of CH4 produced in vitro compared to CH4 emitted in situ, corrected for the fractionation during the passage from the aerenchyma to the atmosphere. Isotope mass balances and in situ inhibition experiments with difluoromethane (CH2F2) as specific inhibitor of methanotrophic bacteria agreed that CH4 oxidation was quantitatively important at the beginning of the season, but decreased later. The seasonal pattern was consistent with the change of potential CH4 oxidation rates measured in vitro. At the end of the season, isotope techniques detected an increase of oxidation activity that was too small to be measured with the flux‐based inhibitor technique. If porewater CH4 was used as a proxy of produced CH4, neither magnitude nor seasonal pattern of in situ CH4 oxidation could be reproduced. An oxidation signal was also found in the isotopic signature of CH4 from gas bubbles that were released by natural ebullition. In contrast, bubbles stirred up from the bulk soil had preserved the isotopic signature of the originally produced CH4.  相似文献   

11.
The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae.  相似文献   

12.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

13.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

14.
Methyl fluoride is frequently used to specifically inhibit acetoclastic methanogenesis, thus allowing determination of the relative contribution of acetate versus H2/CO2 to total CH4 production in natural environments. However, the effect of the inhibitor on growth of the target archaeal population has not yet been studied. Therefore, we incubated rice roots as an environmental model system under anoxic conditions in the presence and absence of CH3F, measured the activity and Gibbs free energy (ΔG) of CH4 production, and determined the abundance of individual archaeal populations by using a combination of quantitative (real-time) PCR and analysis of terminal restriction fragment length polymorphism targeting the 16S rRNA gene. It was shown that CH3F specifically inhibited not only acetoclastic methanogenic activity but also the proliferation of Methanosarcina spp, which were the prevalent acetoclastic methanogens in our environmental model system. Therefore, inhibition experiments with CH3F seem to be a suitable method for quantifying acetoclastic CH4 production. It is furthermore shown that the growth and final population size of methanogens were consistent with energetic conditions that at least covered the maintenance requirements of the population.  相似文献   

15.
Thawing permafrost in the Canadian Arctic tundra leads to peat erosion and slumping in narrow and shallow runnel ponds that surround more commonly studied polygonal ponds. Here we compared the methane production between runnel and polygonal ponds using stable isotope ratios, 14C signatures, and investigated potential methanogenic communities through high-throughput sequencing archaeal 16S rRNA genes. We found that runnel ponds had significantly higher methane and carbon dioxide emissions, produced from a slightly larger fraction of old carbon, compared to polygonal ponds. The methane stable isotopic signature indicated production through acetoclastic methanogenesis, but gene signatures from acetoclastic and hydrogenotrophic methanogenic Archaea were detected in both polygonal and runnel ponds. We conclude that runnel ponds represent a source of methane from potentially older C, and that they contain methanogenic communities able to use diverse sources of carbon, increasing the risk of augmented methane release under a warmer climate.  相似文献   

16.

Anaerobic microbial activity in northern peat soils most often results in more carbon dioxide (CO 2 ) production than methane (CH4) production. This study examined why methanogenic conditions (i.e., equal molar amounts of CH4 production and CO2 production) prevail so infrequently. We used peat soils from two ombrotrophic bogs and from two rheotrophic fens. The former two represented a relatively dry bog hummock and a wet bog hollow, and the latter two represented a forested fen and a sedge-dominated fen. We quantified gas production rates in soil samples incubated in vitro with and without added metabolic substrates (glucose, ethanol, H2/CO2). None of the peat soils exhibited methanogenic conditions when incubated in vitro for a short time (< 5 days) and without added substrates. Incubating some samples > 50 days without added substrates led to methanogenic conditions in only one of four experiments. The anaerobic CO2:CH4 production ratio ranged from 5:1 to 40:1 in peat soil without additions and was larger in samples from the dry bog hummock and forested fen than the wet bog hollow and sedge fen. Adding ethanol or glucose separately to peat soils led to methanogenic conditions within 5 days after the addition by stimulating rates of CH4 production, suggesting CH4 production from both hydrogenotrophic and acetoclastic methanogenesis. Our results suggest that methanogenic conditions in peat soils rely on a constant supply of easily decomposable metabolic substrates. Sample handling and incubation procedures might obscure methanogenic conditions in peat soil incubated in vitro.  相似文献   

17.
The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-14C]acetate was predominantly incorporated into cell material, although some 14CH4 and 14CO2 was produced. Acetate incorporation was reduced by dark incubation in short-term experiments and severely depressed by a 2-day preincubation in darkness. Autoradiograms showed that acetate was incorporated by long filaments resembling phototrophic microorganisms of the mat communities. [3H]acetate was not converted to C3H4 in samples from Octopus Spring collected at the optimum temperature for methanogenesis. NaH14CO3 was readily converted to 14CH4 at temperatures at which methanogenesis was active in both mats. Comparisons of the specific activities of methane and carbon dioxide suggested that of the methane produced, 80 ± 6% in Octopus Spring and 71 ± 21% in Wiegert Channel were derived from carbon dioxide. Addition of acetate to 1 mM did not reduce the relative importance of carbon dioxide as a methane precursor in samples from Octopus Spring. Experiments with pure cultures of Methanobacterium thermoautotrophicum suggested that the measured ratio of specific activities might underestimate the true contribution of carbon dioxide in methanogenesis.  相似文献   

18.
The activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase were tested in cell extracts of 10 different methanogenic bacteria grown on H2/CO2 or on other methanogenic substrates. The four activities were found in all the organisms investigated: Methanobacterium thermoautotrophicum,M. wolfei, Methanobrevibacter arboriphilus, Methanosphaera stadtmanae, Methanosarcina barkeri (strains Fusaro and MS), Methanothrix soehngenii, Methanospirillum hungatei, Methanogenium organophilum, and Methanococcus voltae. Cell extracts of H2/CO2 grown M. barkeri and of methanol grown M. barkeri showed the same specific activities suggesting that the four enzymes are of equal importance in CO2 reduction to methane and in methanol disproportionation to CO2 and CH4. In contrast, cell extracts of acetate grown M. barkeri exhibited much lower activities of formylmethanofuran dehydrogenase and methylenetetrahydromethanopterin dehydrogenase suggesting that these two enzymes are not involved in methanogenesis from acetate. In M. stadtmanae, which grows on H2 and methanol, only heterodisulfide reductase was detected in activities sufficient to account for the in vivo methane formation rate. This finding is consistent with the view that the three other oxidoreductases are not required for methanol reduction to methane with H2.  相似文献   

19.
The activity of and potential substrates for methane-producing bacteria and sulfate-reducing bacteria were examined in marsh, estuary, and beach intertidal sediments. Slow rates of methane production were detected in all sediments, although rates of sulfate reduction were 100- to 1,000-fold higher. After sulfate was depleted in sediments, the rates of methane production sharply increased. The addition of methylamine stimulated methanogenesis in the presence of sulfate, and [14C]methylamine was rapidly converted to 14CH4 and 14CO2 in freshly collected marsh sediment. Acetate, hydrogen, or methionine additions did not stimulate methanogenesis. [methyl-14C]methionine and [2-14C]acetate were converted to 14CO2 and not to 14CH4 in fresh sediment. No reduction of 14CO2 to 14CH4 occurred in fresh sediment. Molybdate, an inhibitor of sulfate reduction, inhibited [2-14C]acetate metabolism by 98.5%. Fluoracetate, an inhibitor of acetate metabolism, inhibited sulfate reduction by 61%. These results suggest that acetate is a major electron donor for sulfate reduction in marine sediments. In the presence of high concentrations of sulfate, methane may be derived from novel substrates such as methylamine.  相似文献   

20.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号