首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors.  相似文献   

2.
First described as a weak apoptosis inducer, the TNF superfamily ligand TWEAK has since emerged as a cytokine that regulates multiple cellular responses, including proinflammatory activity, angiogenesis and cell proliferation, suggesting roles in inflammation and cancer. More recently TWEAK's ability to regulate progenitor cell fate was elucidated. Experiments using genetic overexpression and pathway inhibition or deficiency in mice indicate that TWEAK coordinates inflammatory and progenitor cell responses in settings of acute injury through its highly inducible receptor, FGF-inducible molecule 14 (Fn14), establishing the pathway's physiological role in facilitating acute tissue repair. In contrast, in chronic inflammatory disease models characterized by persistent TWEAK/Fn14 activation, TWEAK functions as a novel pathogenic mediator by amplifying inflammation, promoting tissue damage and potentially impeding endogenous repair mechanisms. Herein we aim not only to review the multifaceted functions of this emerging pathway, but also propose a conceptual framework for TWEAK/Fn14 pathway function in health and disease, supported by studies employing TWEAK and Fn14 deficient mice and anti-TWEAK blocking mAbs in acute injury and inflammatory disease settings. In addition to a perspective of the biology, we discuss potential therapeutic strategies targeting this pathway for the treatment of tissue injury, chronic inflammatory diseases and cancer.  相似文献   

3.
Angiotensin-converting enzyme 2 (ACE2) has been shown to prevent atherosclerotic lesions and renal inflammation. However, little was elucidated upon the effects and mechanisms of ACE2 in atherosclerotic kidney fibrosis progression. Here, we examined regulatory roles of ACE2 in renal fibrosis in the apolipoprotein E (ApoE) knockout (KO) mice. The ApoEKO mice were randomized to daily deliver either angiotensin (Ang) II (1.5 mg/kg) and/or human recombinant ACE2 (rhACE2; 2 mg/kg) for 2 weeks. Downregulation of ACE2 and upregulation of phosphorylated Akt, mTOR and ERK1/2 levels were observed in ApoEKO kidneys. Ang II infusion led to increased tubulointerstitial fibrosis in the ApoEKO mice with greater activation of the mTOR/ERK1/2 signaling. The Ang II-mediated renal fibrosis and structural injury were strikingly rescued by rhACE2 supplementation, associated with reduced mRNA expression of TGF-β1 and collagen I and elevated renal Ang-(1–7) levels. In cultured mouse kidney fibroblasts, exposure with Ang II (100 nmol L−1) resulted in obvious elevations in superoxide generation, phosphorylated levels of mTOR and ERK1/2 as well as mRNA levels of TGF-β1, collagen I and fibronectin 1, which were dramatically prevented by rhACE2 (1 mg mL−1) or mTOR inhibitor rapamycin (10 μmol L−1). These protective effects of rhACE2 were eradicated by the Ang-(1–7)/Mas receptor antagonist A779 (1 μmol L−1). Our results demonstrate the importance of ACE2 in amelioration of kidney fibrosis and renal injury in the ApoE-mutant mice via modulation of the mTOR/ERK signaling and renal Ang-(1–7)/Ang II balance, thus indicating potential therapeutic strategies by enhancing ACE2 action for preventing atherosclerosis and fibrosis-associated kidney disorders.  相似文献   

4.
Alport syndrome is a hereditary type IV collagen disease leading to progressive renal fibrosis, hearing loss and ocular changes. End stage renal failure usually develops during adolescence. COL4A3?/? mice serve as an animal model for progressive renal scarring in Alport syndrome. The present study evaluates the role of Discoidin Domain Receptor 1 (DDR1) in cell–matrix interaction involved in pathogenesis of Alport syndrome including renal inflammation and fibrosis.DDR1/COL4A3 Double-knockouts were compared to COL4A3?/? mice with 50% or 100% expression of DDR1, wildtype controls and to DDR1?/? COL4A3+/+ controls for over 6 years. Double-knockouts lived 47% longer, mice with 50% DDR1 lived 29% longer and showed improved renal function (reduction in proteinuria and blood urea nitrogen) compared to animals with 100% DDR1 expression. Loss of DDR1 reduced proinflammtory, profibrotic cells via signaling of TGFβ, CTGF, NFκB and IL-6 and decreased deposition of extracellular matrix. Immunogold-staining and in-situ hybridisation identified podocytes as major players in DDR1-mediated fibrosis and inflammation within the kidney.In summary, glomerular epithelial cells (podocytes) express DDR1. Loss of DDR1-expression in the kidney delayed renal fibrosis and inflammation in hereditary type IV collagen disease. This supports our hypothesis that podocyte–matrix interaction via collagen receptors plays an important part in progression of renal fibrosis in Alport disease. The blockade of collagen-receptor DDR1 might serve as an important new therapeutic concept in progressive fibrotic and inflammatory diseases in the future.  相似文献   

5.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.  相似文献   

6.
Our recent studies have shown that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment and activation of bone marrow-derived fibroblast precursors are incompletely understood. We found that interleukin 6 was induced in the kidney in a murine model of renal fibrosis induced by unilateral ureteral obstruction. Therefore, we investigated if interleukin 6 play a role in the recruitment and maturation of bone marrow-derived fibroblast precursors in the kidney during the development of renal fibrosis. Wild-type and interleukin 6 knockout mice were subjected to unilateral obstructive injury for up to two weeks. Interleukin 6 knockout mice accumulated similar number of bone marrow-derived fibroblast precursors and myofibroblasts in the kidney in response to obstructive injury compared to wild-type mice. Furthermore, IL-6 knockout mice expressed comparable α-SMA in the obstructed kidney compared to wild-type mice. Moreover, targeted disruption of Interleukin 6 did not affect gene expression of profibrotic chemokine and cytokines in the obstructed kidney. Finally, there were no significant differences in renal interstitial fibrosis or expression of extracellular matrix proteins between wild-type and interleukin 6 knockout mice following obstructive injury. Our results indicate that interleukin 6 does not play a significant role in the recruitment of bone marrow-derived fibroblast precursors and the development of renal fibrosis.  相似文献   

7.
Transforming growth factor beta1 (TGF-beta1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-beta and Ras signaling pathways are closely related: TGF-beta1 overcomes Ras mitogenic effects and Ras counteracts TGF-beta signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-beta1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras(-/-)/N-ras(-/-)) isoforms and from heterozygote mice (H-ras(+/-)/N-ras(+/-)). ECM synthesis is increased in basal conditions in H-ras(-/-)/N-ras(-/-) fibroblasts, this increase being higher after stimulation with TGF-beta1. TGF-beta1-induced fibroblast proliferation is smaller in H-ras(-/-)/N-ras(-/-) than in H-ras(+/-)/N-ras(+/-) fibroblasts. Erk activation is decreased in H-ras(-/-)/N-ras(-/-) fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.  相似文献   

8.
TNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, is a prominent inducer of proinflammatory cytokines in vitro and in vivo. We previously found that kidney cells display the TWEAK receptor Fn14, and that TWEAK stimulation of mesangial cells and podocytes induces a potent proinflammatory response. Several of the cytokines up-regulated in the kidney in response to TWEAK are instrumental in Lupus nephritis; we therefore hypothesized that TWEAK/Fn14 interactions may be important in the cascade(s) leading to renal damage in systemic Lupus erythematosus. In this study, we analyzed the effects of Fn14 deficiency in the chronic graft-vs-host model of SLE, and the benefits of treatment with an anti-TWEAK mAb in this mouse model. We found that anti-nuclear Ab titers were no different between C57BL/6 Fn14 wild-type and deficient mice injected with alloreactive bm12 splenocytes. However, kidney disease was significantly less severe in Fn14 knockout mice. Furthermore, kidney IgG deposition, IL-6, MCP-1, RANTES, and IP-10, as well as macrophage infiltration, were significantly decreased in Fn14-deficient mice with induced lupus. Similarly, mice with induced Lupus treated with an anti-TWEAK neutralizing mAb had significantly diminished kidney expression of IL-6, MCP-1, IL-10, as well as proteinuria, but similar autoantibody titers, as compared with control-treated mice. We conclude that TWEAK is an important mediator of kidney damage that acts by promoting local inflammatory events, but without impacting adaptive immunity in this experimental LN model. Thus, TWEAK blockade may be a novel therapeutic approach to reduce renal damage in SLE.  相似文献   

9.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   

10.
11.
Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC–MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury was also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8 nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8 nmol/kg linear HBSP in a 48 h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.  相似文献   

12.
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human-specific CHRFAM7A expression, an inflammation-related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO-induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF-β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO-injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF-β1-induced increase in expression of fibrosis-related genes in human renal tubular epithelial cells (HK-2 cells). Additionally, up-regulated expression of CHRFAM7A in HK-2 cells decreased TGF-β1-induced epithelial-mesenchymal transition (EMT) and inhibited activation f TGF-β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human-specific CHRFAM7A gene can reduce UUO-induced renal fibrosis by inhibiting TGF-β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.  相似文献   

13.
End‐stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease‐activated receptor (PAR)‐1, which recently emerged as an inducer of epithelial‐to‐mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR‐1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR‐1‐deficient mice during unilateral ureter obstruction (UUO) and that PAR‐1‐deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild‐type and PAR‐1‐deficient mice suggesting that diminished fibrosis in PAR‐1‐deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR‐1‐deficient animals which were accompanied by diminished production of MCP‐1 and TGF‐β. Overall, we thus show that PAR‐1 drives EMT of TECs in vitro and aggravates UUO‐induced renal fibrosis although this is likely due to PAR‐1‐dependent pro‐fibrotic cytokine production rather than EMT.  相似文献   

14.
TWEAK is a cytokine of the TNF superfamily that activates the Fn14 receptor. TWEAK may regulate cell proliferation, cell death, cell differentiation, angiogenesis and inflammation. The expression of TWEAK and Fn14 is increased during vascular and renal injury. Inflammatory cytokines increase Fn14 receptor expression in tubular and vascular smooth muscle cells. Moreover, TWEAK induces tubular cell apoptosis under proinflammatory conditions. TWEAK itself contributes to renal and vascular inflammation by promoting chemokine and inflammatory cytokine secretion. Confirmation of its role in acute kidney injury and atherosclerotic lesions formation came from functional studies in experimental animal models. The available evidence suggests that TWEAK might be a target for therapeutic intervention in renal and vascular injury and its role in different forms of tissue damage should be further explored.  相似文献   

15.
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33 mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01 mg/kg per 48 h for 3 months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.  相似文献   

16.
Sphingosine kinases (Sphks) are the rate-limiting enzymes in the conversion of sphingosine to biologically active sphingosine-1-phosphate. The present study aimed to determine the role of Sphk2 and its downstream targets in renal fibroblast activation and interstitial fibrosis. In the kidney interstitium of patients with renal fibrosis, Sphk2high-expressing cells (mainly interstitial fibroblasts) were significantly elevated and highly correlated with disease progression in patients. In a murine model of renal interstitial fibrosis, Sphk2 was upregulated in the kidney of wild-type mice in response to disease progression. Importantly, Sphk2-knockout (KO) mice exhibited significantly lower levels of extracellular matrix (ECM) production and a suppressed inflammatory response in the kidney tissues, compared to those in their wild-type counterparts, whereas the expression of TGF-β1 was unaffected. TGF-β1 effectively upregulated Sphk2 expression in the renal interstitial fibroblast line, NRK-49F, independent of canonical Smad signaling activation. Furthermore, siRNA-mediated Sphk2 knockdown or suppression of Sphk2 activity by ABC294640 exposure effectively attenuated AKT and STAT3 activation and ECM production, but had no effects on Smad2 and Smad3 activation. Sphk2 phosphorylated Fyn to activate downstream STAT3 and AKT, thereby promoting ECM synthesis. Therefore, our findings indicate that targeting Sphk2-Fyn-STAT3/AKT signaling pathway may be a novel therapeutic approach for renal fibrosis.  相似文献   

17.
18.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) engagement with the receptor Fn14 contributes to the fibrotic process of kidney cells in systemic lupus erythematosus. Downregulation of the protein suppressor of cytokine signaling 1 (SOCS1) correlates with amplified production of proinflammatory factors and cell apoptosis, which participate in the pathogenesis of lupus nephritis. To elucidate the potential role of SOCS1 in TWEAK/Fn14 signaling, we determined the SOCS1 levels in primary kidney cells from MRL/MpJ (control strain) or MRL/lpr (lupus-prone) mice. These cells (mesangial cells, glomerular endothelial cells, and tubular epithelial cells) were also evaluated after stimulation with TWEAK (0 to 250 ng/mL). The results showed that the lupus-prone cells exhibited reduced SOCS1 expression. TWEAK induced the production of profibrotic factors (laminin, fibronectin, (CC motif) ligand 20, etc.) in kidney cells from both mouse strains. TWEAK stimulation also decreased both the mRNA and protein levels of SOCS1 in all cells. Moreover, the effect of TWEAK on mesangial cells was amplified by pre-transfection of SOCS1 siRNA but was partly reduced with SOCS1 overexpression by adenoviral delivery. Therefore, TWEAK/Fn14 activation contributes to renal fibrosis in lupus nephritis involving the depression of SOCS1 function.  相似文献   

19.
BackgroundConnective Tissue Growth Factor (CTGF/CCN2) is an important mediator of kidney fibrosis. Previous observations indicated that attenuation of CCN2 expression sufficed to alleviate early kidney damage. However, little is known about the role of CCN2 in fibrosis of severely damaged and more chronically injured kidneys. Therefore, we examined the effects of CCN2 haploinsufficiency on the progression of renal scarring in long-term STZ-induced diabetic nephropathy, in a more advanced stage of obstructive nephropathy following unilateral ureteric obstruction (UUO), and in severe aristolochic acid (AA)-induced tubulotoxic nephritis.MethodsWild-type (WT, CCN2+/+) and hemizygous CCN2+/? C57Bl/6 mice were studied. In the diabetes experiment, streptozotocin-injected and control mice were followed for 6 months, with regular blood pressure, glycaemia and albuminuria recordings. In the UUO experiment, the left ureter was obstructed for 14 days with the contralateral kidney serving as control. For the AA experiment, mice were followed for 25 days after 5 intraperitoneal injections with AA and compared to control mice injected with buffer alone. Organs were harvested for histology, mRNA and protein measurements. Collagen content was determined by HPLC and expressed as hydroxyproline/proline ratio.ResultsCCN2 expression was significantly increased in the damaged as compared to control kidneys. In all three models, CCN2 levels in the damaged kidneys of CCN2+/? mice averaged about 50% of those in damaged WT kidneys. After 6 months of diabetes, albuminuria was increased 2.5-fold in WT mice, compared to 1.5-fold in CCN2+/? mice, mesangial matrix was expanded 5-fold in WT and 4.4-fold in CCN2+/? mice and the glomerular basement membrane was thickened 1.3-fold in WT and 1.5-fold in CCN2+/? mice (all differences between WT and CCN2+/? mice are NS). Tubular damage and interstitial fibrosis scores were also not different between Wt and CCN2+/? mice in the diabetes (1.8 vs. 1.7), UUO (2.8 vs. 2.6), and AA (1.4 vs. 1.2) models, as was the case for macrophage influx and collagen content in these three models.ConclusionUnlike in mild and relatively early STZ-induced diabetic nephropathy, scarring of severely and chronically damaged kidneys is not attenuated by a 50% reduction of CCN2 to (near) normal levels. This suggests that CCN2 is either redundant in severe and chronic kidney disease, or that it is a limiting factor only at subnormal concentrations requiring further reduction by available or emerging therapies to prevent fibrosis of the severely injured kidney.  相似文献   

20.
Extracellular signal-regulated kinase (ERK) signals play important roles in cell death and survival. However, the role of ERK in the repair process after injury remains to be defined in the kidney. Here, we investigated the role of ERK in proliferation and differentiation of tubular epithelial cells, and proliferation of interstitial cells following ischemia/reperfusion (I/R) injury in the mouse kidney. Mice were subjected to 30 min of renal ischemia. Some mice were administered with U0126, a specific upstream inhibitor of ERK, daily during the recovery phase, beginning at 1 day after ischemia until sacrifice. I/R caused severe tubular cell damage and functional loss in the kidney. Nine days after ischemia, the kidney was restored functionally with a partial restoration of damaged tubules and expansion of fibrotic lesions. ERK was activated by I/R and the activated ERK was sustained for 9 days. U0126 inhibited the proliferation, basolateral relocalization of Na,K-ATPase and lengthening of primary cilia in tubular epithelial cells, whereas it enhanced the proliferation of interstitial cells and accumulation of extracellular matrix. Furthermore, U0126 elevated the expression of cell cycle arrest-related proteins, p21 and phospholylated-chk2 in the post-ischemic kidney. U0126 mitigated the post-I/R increase of Sec10 which is a crucial component of exocyst complex and an important factor in ciliogenesis and tubulogenesis. U0126 also enhanced the expression of fibrosis-related proteins, TGF-β1 and phosphorylated NF-κB after ischemia. Our findings demonstrate that activation of ERK is required for both the restoration of damaged tubular epithelial cells and the inhibition of fibrosis progression following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号