首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   56篇
  2023年   1篇
  2021年   8篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   16篇
  2016年   17篇
  2015年   29篇
  2014年   29篇
  2013年   36篇
  2012年   59篇
  2011年   47篇
  2010年   29篇
  2009年   32篇
  2008年   38篇
  2007年   40篇
  2006年   39篇
  2005年   25篇
  2004年   23篇
  2003年   19篇
  2002年   32篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   9篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有646条查询结果,搜索用时 114 毫秒
1.
The demersal fish and cephalopod communities of the continental shelf and upper slope from 17 to 395m deep were studied during five annual cruises between Cape Agulhas and Port Alfred, South Africa. The cruises showed a consistent pattern of an inshore community (<100m), a shelf community ( c . 90–190m) and a shelf-edge/upper slope fauna (>200m). These groups were identified by dendrograms and multidimensional scaling cluster analysis, which supported on-board observations of catch variation with depth. Although the boundaries are not clearly defined, examination of physical features at the clustered stations suggests that depth, temperature and, to a lesser extent, oxygen concentration are important in the grouping. Occasional, apparently anomalous associations of inshore stations suggested that water temperature and oxygen may over-ride the normal depth distributions of the species groups. This intimates that patterns offish and cephalopod distribution may be dynamic and in part related to the physical parameters of the water body.  相似文献   
2.
3.
Optimizing bio-production involves strain and process improvements performed as discrete steps. However, environment impacts genotype and a strain that is optimal under one set of conditions may not be under different conditions. We present a methodology to simultaneously vary genetic and process factors, so that both can be guided by design of experiments (DOE). Advances in DNA assembly and gene insulation facilitate this approach by accelerating multi-gene pathway construction and the statistical interpretation of screening data. This is applied to a 6-aminocaproic acid (6-ACA) pathway in Escherichia coli consisting of six heterologous enzymes. A 32-member fraction factorial library is designed that simultaneously perturbs expression and media composition. This is compared to a 64-member full factorial library just varying expression (0.64 Mb of DNA assembly). Statistical analysis of the screening data from these libraries leads to different predictions as to whether the expression of enzymes needs to increase or decrease. Therefore, if genotype and media were varied separately this would lead to a suboptimal combination. This is applied to the design of a strain and media composition that increases 6-ACA from 9 to 48 mg/l in a single optimization step. This work introduces a generalizable platform to co-optimize genetic and non-genetic factors.  相似文献   
4.
Thyroid hormone uptake into primary cultured rat hepatocytes was studied using 1-min incubations with radio-iodine-labelled iodothyronines. (1) Uptake of thyroxine indicates two saturable sites apparent Km values of 1.2 nM and 1.0 μM, and non-saturable uptake. Similar kinetics of triiodothyronine uptake have been observed. (2) The high-affinity systems of both hormones are energy-dependent (i.e., inhibited by KCN and oligomycin). It is postulated that these systems represent active transport of thyroid hormone into the cell. (3) Analysis of mutual inhibition by the substrates for the triiodothyronine and thyroxine transport systems indicates that triiodothyromine and thyroxine cross the cell membrane via separate transport systems. (4) Preincubation with ouabain resulted in a decrease in uptake of both triiodothyronine and thyroxine, suggesting that a sodium gradient is essential for this transport.  相似文献   
5.
  1. Birds colliding with turbine rotor blades is a well‐known negative consequence of wind‐power plants. However, there has been far less attention to the risk of birds colliding with the turbine towers, and how to mitigate this risk.
  2. Based on data from the Smøla wind‐power plant in Central Norway, it seems highly likely that willow ptarmigan (the only gallinaceous species found on the island) is prone to collide with turbine towers. By employing a BACI‐approach, we tested if painting the lower parts of turbine towers black would reduce the collision risk.
  3. Overall, there was a 48% reduction in the number of recorded ptarmigan carcasses per search at painted turbines relative to neighboring control (unpainted) ones, with significant variation both within and between years.
  4. Using contrast painting to the turbine towers resulted in significantly reduced number of ptarmigan carcasses found, emphasizing the effectiveness of such a relatively simple mitigation measure.
  相似文献   
6.
Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.  相似文献   
7.
The African Programme for Onchocerciasis Control (APOC) is currently shifting its focus from morbidity control to elimination of infection. To enhance the likelihood of elimination and speed up its achievement, programs may consider to increase the frequency of ivermectin mass treatment from annual to 6-monthly or even higher. In a computer simulation study, we examined the potential impact of increasing the mass treatment frequency for different settings. With the ONCHOSIM model, we simulated 92,610 scenarios pertaining to different assumptions about transmission conditions, history of mass treatment, the future mass treatment strategy, and ivermectin efficacy. Simulation results were used to determine the minimum remaining program duration and number of treatment rounds required to achieve 99% probability of elimination. Doubling the frequency of treatment from yearly to 6-monthly or 3-monthly was predicted to reduce remaining program duration by about 40% or 60%, respectively. These reductions come at a cost of additional treatment rounds, especially in case of 3-monthly mass treatment. Also, aforementioned reductions are highly dependent on maintained coverage, and could be completely nullified if coverage of mass treatment were to fall in the future. In low coverage settings, increasing treatment coverage is almost just as effective as increasing treatment frequency. We conclude that 6-monthly mass treatment may only be worth the effort in situations where annual treatment is expected to take a long time to achieve elimination in spite of good treatment coverage, e.g. because of unfavorable transmission conditions or because mass treatment started recently.  相似文献   
8.
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg‐densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual‐based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post‐alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre‐alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size – density relationships were similar to those observed in the field. The importance of pre‐ and post‐ alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed.  相似文献   
9.
Metabolic profiling and structural elucidation of novel secondary metabolites obtained from derived deletion strains of the filamentous fungus Penicillium chrysogenum were used to reassign various previously ascribed synthetase genes of the roquefortine/meleagrin pathway to their corresponding products. Next to the structural characterization of roquefortine F and neoxaline, which are for the first time reported for P. chrysogenum, we identified the novel metabolite roquefortine L, including its degradation products, harboring remarkable chemical structures. Their biosynthesis is discussed, questioning the exclusive role of glandicoline A as key intermediate in the pathway. The results reveal that further enzymes of this pathway are rather unspecific and catalyze more than one reaction, leading to excessive branching in the pathway with meleagrin and neoxaline as end products of two branches.  相似文献   
10.
Profiling and structural elucidation of secondary metabolites produced by the filamentous fungus Penicillium chrysogenum and derived deletion strains were used to identify the various metabolites and enzymatic steps belonging to the roquefortine/meleagrin pathway. Major abundant metabolites of this pathway were identified as histidyltryptophanyldiketopiperazine (HTD), dehydrohistidyltryptophanyldi-ketopiperazine (DHTD), roquefortine D, roquefortine C, glandicoline A, glandicoline B and meleagrin. Specific genes could be assigned to each enzymatic reaction step. The nonribosomal peptide synthetase RoqA accepts L-histidine and L-tryptophan as substrates leading to the production of the diketopiperazine HTD. DHTD, previously suggested to be a degradation product of roquefortine C, was found to be derived from HTD involving the cytochrome P450 oxidoreductase RoqR. The dimethylallyltryptophan synthetase RoqD prenylates both HTD and DHTD yielding directly the products roquefortine D and roquefortine C without the synthesis of a previously suggested intermediate and the involvement of RoqM. This leads to a branch in the otherwise linear pathway. Roquefortine C is subsequently converted into glandicoline B with glandicoline A as intermediates, involving two monooxygenases (RoqM and RoqO) which were mixed up in an earlier attempt to elucidate the biosynthetic pathway. Eventually, meleagrin is produced from glandicoline B involving a methyltransferase (RoqN). It is concluded that roquefortine C and meleagrin are derived from a branched biosynthetic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号