首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The role of glutathione (GSH) in the rejoining of radiation-induced single-strand DNA breaks (ssb) was studied in human fibroblast cultures sensitized to radiation by a 30 min treatment with 1 mM misonidazole (MISO). Hypoxically irradiated cells, deficient in GSH, either inherently, or due to a 16 h incubation with 1 mM buthionine sulphoximine (BSO), rejoined the breaks after MISO treatment at a lower rate and to a lesser extent than did GSH-proficient cells. Without MISO treatment, the hypoxically induced ssb were rejoined in the GSH-deficient cells as effectively as in the proficient cells. It is concluded that a large proportion of the breaks which arise after hypoxic irradiation in the presence of MISO are of a different type to those which arise in the absence of the drug, and require a particular GSH-dependent, enzymatic repair system. This requirement for rejoining in hypoxically irradiated, MISO-treated cells is similar to that seen earlier in MISO-untreated, oxically irradiated cells, and suggests that the ssb induced by radiation in the presence of MISO or oxygen are of a similar nature.  相似文献   

2.
The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [125I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 X 10(-12) DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process.  相似文献   

3.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

4.
Bromodeoxyuridine (BrdU) competes with thymidine (TdR) for incorporation into DNA of exponentially growing V79-171 cells. Such cells show an enhancement of the radiation response as determined by clonogenic survival and DNA damage measured by filter elution techniques after doses up to 15 Gy. The degree of radiosensitization for both survival and rates of alkaline and neutral elution are dependent on percentage BrdU substitution and independent of whether BrdU is in one strand only (monofilar) or both strands (bifilar) of the DNA duplex: e.g., for 16% BrdU substitution distributed either monofilarly or partially bifilarly, there is an enhancement factor for Do of 1.55. At this percentage substitution, the enhancement factor for the rate of alkaline elution is 1.75 and that for the rate of neutral elution is 1.54. The greater the percentage BrdU substitution, the larger was the enhancement ratio for survival and radiation-induced strand breaks in both monofilarly and bifilarly substituted cells. The increase in cell radiosensitivity caused by BrdU substitution shows a better correlation with the increase in radiation-induced double-strand breaks than with the increase in radiation-induced single-strand breaks.  相似文献   

5.
Formation of strand-breaks in DNA and its repair in Yoshida ascites tumor cells exposed to gamma radiation (100-400 Gy) in presence and absence of misonidazole (10 mM) were studied. The methodology involved pre-labelling of cellular DNA by 3H-thymidine during cell proliferation in rats, irradiation of cells in vitro and analysing sedimentation profile of DNA by ultracentrifugation in alkaline sucrose density gradients. Irradiation under euoxic conditions resulted in formation of about 1.5 times greater number of strand breaks as compared to those formed during irradiation under hypoxic conditions. Misonidazole (10 mM) by its presence along with the cells during irradiation under hypoxic conditions caused a 3-fold increase in the number of single strand breaks, but under euoxic conditions of irradiation the presence of misonidazole did not enhance the strand break formation. Incubation of cells irradiated in absence of misonidazole for 1 hr in tissue culture medium at 37 degrees C resulted in repair of substantial fraction of the strand breaks while there was no repair of the DNA strand breaks in cells irradiated in the presence of the chemical.  相似文献   

6.
The mechanism of radiosensitization by diazenedicarboxylic acid bis(N),N-piperidide (SR 4077), a less toxic analog of diamide, was studied using Chinese hamster ovary cells. SR 4077 gave an average SER of 1.58 for postirradiation incubations of 0.5, 1.0, or 2.0 h. Intracellular GSH and protein thiols decreased rapidly following drug addition and GSSG increased. The GSH/GSSG ratio shifted to 1/1.6 after SR 4077 addition but returned to greater than 10/1 between 0.5 and 1.0 h. After 4 h, total intracellular GSH was only 58% of pretreatment level and extracellular GSSG increased. Protein thiols decreased to 18% of pretreatment values, recovered most rapidly between 0.5 and 1.0 h, and reached 87% of pretreatment level after 4 h. A decrease in DNA single-strand break repair as measured by alkaline filter elution rate over 0.5 h was seen, and the initial rate of repair was slower than in cells not treated with SR 4077. DNA double-strand break repair as measured by neutral filter elution rate was delayed during the first hour after irradiation when cells were treated with SR 4077. The times for maximum radiosensitization, GSH and protein thiol oxidation and recovery, and DNA strand break repair kinetics were closely linked. We propose that a protein thiol(s) required in repair processes was reversibly oxidized during SR 4077 treatment.  相似文献   

7.
The objective of this study was to characterize the extent of and mechanisms involved in radiosensitization by 2-nitroimidazoles in multifraction schedules using low doses per fraction. For this purpose, contact-inhibited monolayers of C3H 10T1/2 cells were given 1.7 Gy every 12 h and plated 12 h after the last dose received to allow full repair of potentially lethal damage (PLD). Severe hypoxia was obtained by a 1-h gassing procedure at room temperature immediately before each irradiation. No toxicity occurred as a consequence of multiple exposures to 5 mM misonidazole (MISO) or SR 2508 (2508) during the deoxygenation procedure. Experimental conditions during the pregassing and irradiation (presence of drug and gas mixture) were appropriately manipulated to test for the different mechanisms of radiosensitization demonstrated by nitroimidazoles. A very low oxygen enhancement ratio (OER) results under these conditions (1.34). Exposure to 5 mM MISO or 2508 during the deoxygenation and irradiation of hypoxic cells resulted in greater radiosensitization than could be accounted for by oxygen-mimetic sensitization alone (MISO and 2508 enhancement ratios were greater than the OER). Pregassing cells with N2 in the presence of 5 mM drug sensitized cells which were subsequently irradiated under aerobic conditions (drug free), indicating the occurrence of the "preincubation effect" (which does not require hypoxia or the drug's presence during the irradiation). Thus, for the hypoxic irradiations, the preincubation effect could account for the greater sensitization by nitroimidazoles than by oxygen. The presence of 5 mM drug only during the irradiation of aerobic cells produced radiosensitization in both multifraction and single-dose experiments with delayed plating. This sensitization has been previously shown to involve reduced PLD repair. Finally, maximum radiosensitization occurred in the multifraction schedule when a transient period of hypoxia with drug preceded an aerobic irradiation with drug present, thus combining the benefits of both the preincubation effect and PLD repair inhibition. This work demonstrates the possibility that effects other than oxygen-mimetic radiosensitization could be largely responsible for the sensitization seen in multifraction schedules, particularly when the OER is already low and only transient periods of hypoxia occur.  相似文献   

8.
By treating a human tumor cell line with various concentrations of diamide, we explored the relationship between extent and duration of protein and nonprotein thiol oxidation, initiation of DNA double-strand break rejoining after X-rays, and the degree of radiosensitization. We also examined the relationship between protein thiol status and the non-protein thiol, glutathione (GSH). A549 cells were irradiated and incubated postirradiation with 0, 100, 300 or 500 microM diamide for 1 h. The dose of radiation required to give 10% survival decreased from 4.8 Gy to 3.2 Gy with 300 microM and to 2.7 Gy with 500 microM diamide (enhancement ratios of 1.5 and 1.8, respectively) but was not significantly affected by 100 microM diamide. The time of initiation of double-stranded DNA rejoining after X-irradiation (DNA repair) was delayed by 300 and 500 microM diamide. Furthermore, DNA rejoining began only after total cellular protein thiol content recovered to 55% of pretreatment levels for both concentrations. Intracellular GSH/GSSG ratios decreased immediately after diamide addition to less than 1. Large decreases in GSH/GSSG ratio preceded significant loss of protein thiols, but protein-glutathione mixed disulfides accounted for a minor percentage of the total protein thiol oxidized (up to 20%). We believe that diamide-induced protein thiol loss, and not GSH oxidation, is related to the cessation of DNA strand rejoining after X-irradiation, thereby affecting survival.  相似文献   

9.
We have assessed the effects of two radiomodifying conditions, glutathione (GSH) depletion and hypoxia, on the formation and repair of radiation-induced chromatin damage, specifically DNA-protein cross-links (DPC). As measured by a nitrocellulose filter-binding assay, untreated V79 cells contain a low level of DPC (1-1.5% of the cellular DNA). The background level of DPC is elevated in cells treated with L-buthionine sulfoximine (BSO), in hypoxic cells, and in cells treated with BSO and made hypoxic (2.98%, 2.82%, and 7.71%, respectively). The dose response for production of radiation-induced DPC is approximately 6.0% DNA bound per 100 Gy for cells irradiated in air, and the dose response is not significantly different for BSO-treated cells but increases by a factor of about 1.4 for hypoxic cells and 1.7 for BSO-pretreated hypoxic cells. DPC were also assayed by alkaline elution with or without proteinase K treatment. By this analysis, the yield of DPC appears to be elevated in irradiated hypoxic and irradiated GSH-depleted cells. It is not possible to assay for background DPC alone in unirradiated cells by alkaline elution. Cells not exposed to BSO repair 70-80% of the radiation-induced DPC in 4 h. BSO-treated cells are considerably less efficient in repair of DPC. As analyzed by alkaline elution, GSH depletion had little or no effect on the yield of radiation-induced single-strand breaks (SSB) but slowed their repair. The data suggest that depletion of GSH impairs an enzyme system(s) responsible for the turnover of both background and radiation-induced DPC and that hypoxia elevates both the background level of DPC and the ratio of radiation-induced DPC to SSB.  相似文献   

10.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

11.
Gamma-ray induction of DNA strand breaks and their repair was analysed in the diploid yeast strain D7 (Saccharomyces cerevisiae) by means of the alkaline step elution technique. A dose-dependent increase of DNA strand breakage was observed in the dose range 25-2000 Gy corresponding to 100 and 0.01 per cent survival. When, after exposure to gamma-irradiation, the cells were incubated for 2 h in liquid growth medium, the elution profiles reached the pattern of unirradiated controls, thus indicating the restoration of cellular DNA due to repair. The alkaline step elution analysis is found to be a useful and reproducible technique for studying the induction of DNA strand breaks and repair in yeast. In comparison with other current methods, such as alkaline sucrose gradients and DNA unwinding, this method appears to be more rapid, versatile and easier to handle.  相似文献   

12.
Fluorimetric analysis of DNA unwinding, which allows measurement of DNA strand breaks in human leukocytes, has been optimized by reducing the amount of cells required for the test and by modifying the DNA alkali unwinding conditions. This permitted measurement of DNA strand-break induction in cells irradiated with low (0.5-7 Gy) or high doses (5-20 Gy) of gamma rays. Linear dose-response curves were obtained for both dose ranges. Presence of cysteamine during irradiation caused a decrease in the extent of DNA strand breaks. The kinetics of the DNA strand-break rejoining process appeared to be biphasic over the dose range of 2-20 Gy when plotted on a linear vs linear axis (percentage of damage as a function of time). Since the rate of disappearance of damaged DNA was similar for any given dose and for all postirradiation incubation times tested, we have expressed the extent of repair after a given postirradiation incubation as the ratio of the slopes of the regression lines obtained from incubated and nonincubated cells. Leukocytes from 25 healthy donors were analyzed to determine an average value for controls. No difference in the level of DNA strand breaks and the rate of repair of these breaks was observed between leukocytes from three ataxia telangiectasia patients and those from normal donors.  相似文献   

13.
We have used alkaline elution to study the repair of X-ray-induced DNA strand breaks in vivo in two fibrosarcoma tumors and in several normal mouse tissues after whole-body irradiation of mice with 10-12.5 Gy of X rays. Both tumors were found to repair damage significantly faster and to a greater extent than any of the normal tissues, so that by 2 hr after irradiation the level of damage in both tumors was indistinguishable from unirradiated control values. Of the normal tissues studied, liver repaired the fastest. The kinetics for the other normal tissues were essentially the same, showing an appreciable level (7-16%) of unrepaired lesions still evident after 2 hr. Even as late as 12 hr there was a significant amount of residual damage in some tissues, with testes and spleen showing the greatest level (ca. 15%). The repair kinetics for each tissue were not appropriately described by a sum of two exponentials. In contrast, previously reported data for many homogeneous mammalian cell systems in vitro and for some tissues in vivo have shown biphasic repair kinetics. This difference may be related to heterogeneity of both cell type and environment within the tissue populations used in the investigation. The faster repair of DNA strand breaks by tumor cells relative to cells from normal tissues was not readily explainable in terms of such radiobiological parameters as overall tissue oxygenation or sulfhydryl content. Rather, it appears that the degree of differentiation of the cells within the tissue population may be a major determinant of repair proficiency. Based on a model incorporating a competition between repair and fixation of sublethal lesions, these data are consistent with the idea that tumor cells may have a repair, and hence survival, advantage over normal cells in response to ionizing radiation.  相似文献   

14.
Human and rodent cells proficient and deficient in non-homologous end joining (NHEJ) were irradiated with X rays, 70 keV/microm carbon ions, and 200 keV/microm iron ions, and the biological effects on these cells were compared. For wild-type CHO and normal human fibroblast (HFL III) cells, exposure to iron ions yielded the lowest cell survival, followed by carbon ions and then X rays. NHEJ-deficient xrs6 (a Ku80 mutant of CHO) and 180BR human fibroblast (DNA ligase IV mutant) cells showed similar cell survival for X and carbon-ion irradiation (RBE = approximately 1.0). This phenotype is likely to result from a defective NHEJ protein because xrs6-hamKu80 cells (xrs6 cells corrected with the wild-type KU80 gene) exhibited the wild-type response. At doses higher than 1 Gy, NHEJ-defective cells showed a lower level of survival with iron ions than with carbon ions or X rays, possibly due to inactivation of a radioresistant subpopulation. The G(1) premature chromosome condensation (PCC) assay with HFL III cells revealed LET-dependent impairment of repair of chromosome breaks. Additionally, iron-ion radiation induced non-repairable chromosome breaks not observed with carbon ions or X rays. PCC studies with 180BR cells indicated that the repair kinetics after exposure to carbon and iron ions behaved similarly for the first 6 h, but after 24 h the curve for carbon ions approached that for X rays, while the curve for iron ions remained high. These chromosome data reflect the existence of a slow NHEJ repair phase and severe biological damage induced by iron ions. The auto-phosphorylation of DNA-dependent protein kinase catalytic subunits (DNA-PKcs), an essential NHEJ step, was delayed significantly by high-LET carbon- and iron-ion radiation compared to X rays. This delay was further emphasized in NHEJ-defective 180BR cells. Our results indicate that high-LET radiation induces complex DNA damage that is not easily repaired or is not repaired by NHEJ even at low radiation doses such as 2 Gy.  相似文献   

15.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

16.
The induction of single-strand breaks (SSBs) in the DNA of Chinese hamster ovary cells by X rays under different irradiation conditions was measured by the alkaline elution technique. The oxygen enhancement ratio (OER) for SSB induction determined for cells irradiated in air versus irradiation of cells made hypoxic by metabolic depletion of O2 was 9.7. However, when proteinase K was included in the cell lysis solution the OER was reduced to 4.2. The proteinase affected the elution rate only of the cells irradiated under hypoxic conditions, suggesting that DNA-protein crosslinks (DPCs) are preferentially produced in hypoxic cells by radiation. The ability to repair these DPCs was compared in two cell lines: the wild-type AA8 line and an excision-repair-deficient mutant line, UV-41. The AA8 line removed about 80% of the DPCs induced by radiation under hypoxic conditions within a 24-h repair incubation. The UV-41 line, on the other hand, removed only about 20% of the DPCs in the same time. The OERs for cell survival of these two lines are 3.1 for AA8 but only 1.9 for UV-41, suggesting that the DPCs preferentially induced in the DNA of cells irradiated under hypoxic conditions may contribute to cell killing when the normal DNA-repair mechanisms are compromised.  相似文献   

17.
An Adriamycin-resistant subline of a human breast cancer cell line, MCF-7 ADRR, has been shown to exhibit radioresistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, damage to DNA of MCF-7 sublines WT and ADRR by 60Co gamma radiation was measured by filter elution techniques. The initial amount of DNA damage, measured by both alkaline and neutral filter elution, was lower in ADRR cells, suggesting that these cells are resistant to radiation-induced single- and double-strand DNA breaks. In the case of double-strand breaks the difference between WT and ADRR cells was significant only at the lower radiation doses studied (up to 100 Gy). In cells depleted of glutathione (GSH) by L-buthionine sulfoximine (BSO) treatment, ADRR cells were sensitized to radiation-induced DNA damage, while WT cells were unaffected. The rate of repair of single- and double-strand DNA breaks following radiation was the same for both sublines, and repair of radiation damage was not affected by BSO treatment in either cell line. The relative resistance of ADRR cells to initial DNA damage by radiation is the only difference so far detected at the molecular level which reflects radiation survival, and it is possible that other factors are involved in the resistance of ADRR cells to killing by radiation. Sensitization of ADRR cells to radiation-induced DNA damage by GSH depletion, although not likely to involve inhibition of GSH-dependent detoxification enzymes per se (irradiation was done at 4 degrees C), suggests that at the molecular level radioresponse in this subline is related to maintenance of GSH/GSSG redox equilibrium.  相似文献   

18.
 本文将反向交变电场和六角形电极电场这两种脉冲电场凝胶电泳技术应用于X线照射小鼠乳癌细胞SR-1所致DNA双链断裂的检测,在本实验条件下,用这种电泳都能检测到低至1.5Gy照射所产生的DNA双链断裂,并且用六角形电极电场电泳获得了DNA双链断裂程度与照射剂量之间的良好线性关系,此外,还用此方法观察了不同浓度自由基清除剂DMSO对X线照射SR-1细胞所致DNA双链断裂的保护作用,结果进一步证实本方法的可靠性。  相似文献   

19.
It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined gamma-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose response increased as a linear function of gamma-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair.  相似文献   

20.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号