首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.  相似文献   

2.
European catfish (Silurus glanis) fingerlings (2 to 4 g each) were tested for susceptibility to channel catfish virus (CCV). They had supported CCV replication at 2 days after intraperitoneal injection with 0.1 ml of saline containing 105 TCID50. Homogenized visceral organs (liver, kidney and spleen) contained 104 TCID50/0.1 ml at 2 days post inoculation (PI) but at 4 days the titer decreased to 101 TCID50. Bathing European catfish in CCV yielded only one positive sample with à titer of 100.83 TCID50 per 0.1 ml of tissue. No clinical signs of CCV developed and no virus related deaths occurred.  相似文献   

3.
While evidence exists supporting the potential for aerosol transmission of SARS-CoV-2, the infectious dose by inhalation remains unknown. In the present study, the probability of infection following inhalation of SARS-CoV-2 was dose-dependent in a nonhuman primate model of inhalational COVID-19. The median infectious dose, assessed by seroconversion, was 52 TCID50 (95% CI: 23–363 TCID50), and was significantly lower than the median dose for fever (256 TCID50, 95% CI: 102–603 TCID50), resulting in a group of animals that developed an immune response post-exposure but did not develop fever or other clinical signs of infection. In a subset of these animals, virus was detected in nasopharyngeal and/or oropharyngeal swabs, suggesting that infected animals without signs of disease are able to shed virus and may be infectious, which is consistent with reports of asymptomatic spread in human cases of COVID-19. These results suggest that differences in exposure dose may be a factor influencing disease presentation in humans, and reinforce the importance of public health measures that limit exposure dose, such as social distancing, masking, and increased ventilation. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, and, ultimately, mitigation strategies. Additionally, these data will be useful to inform dose selection in future studies examining the efficacy of therapeutics and vaccines against inhalational COVID-19, and as a baseline in healthy, young adult animals for assessment of the importance of other factors, such as age, comorbidities, and viral variant, on the infectious dose and disease presentation.  相似文献   

4.
5.
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.  相似文献   

6.
A total of 13 insect cell lines spanning 4 orders (Lepidoptera, Coleoptera, Diptera, and Homoptera) were tested for their ability to replicate the nonoccluded virus Hz-1. Only the Lepidopteran cell lines supported replication of the virus with TN-CL1 and BCIRL-HZ-AM1 producing the highest titers of 2.4 × 108 tissue culture infective dose (TCID)50/ml and 2.0 × 108 TCID50/ml, respectively. A codling moth cell line (CP-169) was the only Lepidopteran cell line that did not replicate the virus and transfection of this cell line with Hz-1 DNA failed to replicate the virus. Also, transfection with DNA from a recombinant baculovirus carrying the red fluorescent protein gene (AcMNPVhsp70 Red) was not expressed in CP-169 cells. The replication cycle of Hz-1 in BCIRL-HZ-AM1 cells showed that this virus replicated rapidly starting at 16 h postinoculation (p.i.) and reaching a peak titer of 1.0 × 108 TCID50/ml 56 h postinoculation. Hz-1 when compared with several other baculoviruses has the widest in vitro host spectrum.  相似文献   

7.
Production of Aujeszky’s disease virus (ADV) from BHK 21 C13 suspension cells using a simple harvest and multiple harvest process mode was examined. We studied growth kinetics of BHK 21 C31 cells in 750 ml spinner flask containing 500 ml of culture medium. In the simple harvest process of ADV production, 425 ml of virus harvest was obtained with a virus titer of 106.4 TCID50 ml−1 which corresponds to 10,676 doses of vaccine. The multiple harvest process resulted in 850 ml of virus harvest with a virus titer of 106.5 TCID50 ml−1 corresponding to 26,877 AD vaccine doses. In conclusion, the multiple harvest process mode using BHK 21 C13 can be considered as a favorable process to produce ADV.  相似文献   

8.
9.
Summary One key to the in vitro mass production of baculoviruses is the development of insect cell lines capable of producing high levels of extracellular virus (ECV) and/or occlusion bodies (OBs). For this study, 34 newly established cell lines from 10 lepidopteran species were screened for their ability to produce ECV and OBs from a variety of baculoviruses. The selected baculoviruses included: the alfalfa looper virus (AcMNPV); the celery looper virus (AfMNPV); the velvetbean caterpillar virus (AgMNPV), the bollworm virus (HzSNPV), the diamondback moth virus (PxMNPV), and the beet armyworm virus (SeMNPV). ECV titers were determined using TCID50 assays (50% tissue culture infectivity dose), with the presence or absence of OBs being noted. For AcMNPV, 28 new cell lines were tested, with eight producing AcMNPV ECV titers of 1.1–47.3×106 TCID50/ml and 11 producing OBs. For AgMNPV, six new cell lines were tested, with all producing AgMNPV ECV titers of 3.5–62.3×106 TCID50/ml and generating OBs. For HzSNPV, four new cell lines were tested with three lines producing HzSNPV ECV titers of 1.4–5.0×106TCID50/ml, but none generating OBs. For PxMNPV, 10 new cell lines were tested with seven generating PxMNPV ECV titers of 4.7–232.6×106TCID50/ml and eight producing OBs. Lastly, using qualitative or semiquantitative methods, homologous cell lines were tested for AfMNPV and SeMNPV production, all of which produced OBs. Overall, many of the cell lines tested were found to produce OBs and generate moderate to high levels of ECVs of one or more baculoviruses. All programs and services of the USDA Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status or handicap.  相似文献   

10.
Porcine epidemic diarrhea virus (PEDV) was identified in the United States (U.S.) swine population for the first time in April 2013 and rapidly spread nationwide. However, no information has been published regarding the minimum infectious dose (MID) of PEDV in different pig models. The main objective of this study was to determine the oral minimum infectious dose of PEDV in naïve conventional neonatal piglets and weaned pigs. A U.S. virulent PEDV prototype isolate (USA/IN19338/2013) with known infectious titer was serially ten-fold diluted in virus-negative cell culture medium. Dilutions with theoretical infectious titers from 560 to 0.0056 TCID50/ml together with a medium control were orogastrically inoculated (10ml/pig) into 7 groups of 5-day-old neonatal pigs (n = 4 per group) and 7 groups of 21-day-old weaned pigs (n = 6 per group). In 5-day-old pigs, 10ml of inoculum having titers 560–0.056 TCID50/ml, corresponding to polymerase chain reaction (PCR) cycle threshold (Ct) values 24.2–37.6, resulted in 100% infection in each group; 10ml of inoculum with titer 0.0056 TCID50/ml (Ct>45) caused infection in 25% of the inoculated pigs. In 21-day-old pigs, 10ml of inoculum with titers 560–5.6 TCID50/ml (Ct 24.2–31.4) resulted in 100% infection in each group while 10ml of inoculum with titers 0.56–0.0056 TCID50/ml (Ct values 35.3 –>45) did not establish infection in any pigs under study conditions as determined by clinical signs, PCR, histopathology, immunohistochemistry, and antibody response. These data reveal that PEDV infectious dose is age-dependent with a significantly lower MID for neonatal pigs compared to weaned pigs. This information should be taken into consideration when interpreting clinical relevance of PEDV PCR results and when designing a PEDV bioassay model. The observation of such a low MID in neonates also emphasizes the importance of strict biosecurity and thorough cleaning/disinfection on sow farms.  相似文献   

11.
Summary Insect cell lines from Arthropoda represented by Lepidoptera, Coleoptera, Diptera, and Homoptera were evaluated for their ability to support replication of AcMNPV. In addition, some of the cell lines that were refractive to AcMNPV were tested with AcMNPV hsp70 Red, a recombinant carrying the red fluorescent protein (RFP) gene, for their ability to express this protein after inoculation. Of the 10 lepidopteran cell lines tested, only three cell lines from Helicoverpa zea (BCIRL-HZ-AM1), Lymantria dispar (IPLB-LD 65), and Cydia pomonella (CP-169) failed to support detectable viral replication as measured by tissue culture infectious dose 50 (TCID50) assay. Heliothis virescens (BCIRL-HV-AM1) produced the highest viral titer of 2.3±0.1×107 TCID50/ml followed by Heliothis subflexa (BCIRL-HS-AM1) at 4.7±0.1×106 TCID50/ml and Spodoptera frugiperda (IPLB-SF21) at 4.1±0.1×106 TCID50/ml. None of the coleopteran, dipteran, or homopteran cell lines supported AcMNPV replication. However, when studies were performed using AcMNPV hsp70 Red, the dipteran cell lines Aedes aegypti (ATC-10) and Drosophila melanogaster (line 2), both expressed the RFP as well as the refractive lepidopteran cell lines from H. zea and L. dispar. No RFP expression was observed in any of the coleopteran or homopteran cell lines. Cell lines refractive to AcMNPV did not appear to be adversely affected by the virus, as judged by their ability to multiply, nor was there any indication of induced apoptosis, as assessed by deoxyribonucleic acid fragmentation profiles or cell blebbing or both. Disclaimer: Mention of trade names or commercial product in the publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. All programs and services of the U. S. Department of Agriculture are offered on a nondiseriminatory basis without regard to race, color, national origin, religion, sex, age marital status, or handicap.  相似文献   

12.
Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals since numerous adventitious viruses get contaminated during the manufacturing process. In particular, Chinese hamster ovary (CHO) cells are highly susceptible to minute virus of mice (MVM), bovine parvovirus (BPV), and bovine herpesvirus (BHV). Therefore, viral detection during CHO cell culturing is necessary to ensure the safety of biopharmaceuticals against viruses. In this study, a multiplex PCR assay was developed and subsequently evaluated for its effectiveness to simultaneously detect MVM, BPV and BHV during the manufacture of cell culture-derived biopharmaceuticals. Specific primers for MVM, BPV, and BHV were selected, and a multiplex PCR was optimized. The sensitivity of the assay was 6.49 × 101 TCID50/mL for MVM, 7.23 × 102 TCID50/mL for BPV, and 5.80 × 101 TCID50/mL for BHV. The multiplex PCR assay was very specific to MVM, BPV, and BHV and was subsequently applied to the validation of CHO cells artificially infected with each virus. It could detect each viral DNA from CHO cells as well as culture supernatants. Therefore, we concluded that the multiplex PCR assay is invaluable for detecting adventitious viruses during the manufacture of cell culture-derived biopharmaceuticals.  相似文献   

13.

Background  

Bovine viral diarrhoea virus (BVDV) is an important pathogen in cattle. The ability of the virus to cross the placenta during early pregnancy can result in the birth of persistently infected (PI) calves. These calves shed the virus during their entire lifespan and are the key transmitters of infection. Consequently, identification (and subsequent removal) of PI animals is necessary to rapidly clear infected herds from the virus. The objective of this study was to evaluate the suitability of a commercial Erns-capture ELISA, in comparison to the indirect immunoperoxidase test (IPX), for routine diagnostic detection of BVDV within a control programme. In addition, the effect of passive immunity and heat-inactivation of the samples on the performance of the ELISA was studied.  相似文献   

14.
The purpose of the present study was to evaluate the efficacies and mechanisms of the PAB (para-amino benzamidine) affinity column chromatography, virus filtration, pasteurization (60°C heat treatment for 10 h), and lyophilization steps employed in the manufacture of urokinase from human urine with regard to the removal and/or inactivation of human immunodeficiency virus (HIV), bovine viral diarrhoea virus (BVDV), bovine herpes virus (BHV), and murine encephalomyocarditis virus (EMCV). Samples from relevant stages of the production process were spiked with each virus and subjected to scale-down processes mimicking the manufacture of urokinase. Samples were collected at each step, immediately titrated using a 50% tissue culture infectious dose (TCID50), and the virus reduction factors evaluated. PAB chromatography was found to be an effective step for removing BVDV, BHV, and EMCV with log reduction factors of 2.79, 6.50, and 5.96, respectively. HIV, BVDV, BHV, and EMCV were completely removed during the Viresolve NFP filtration step with log reduction factors of ≥6.06, ≥4.60, ≥5.44, and ≥6.87, respectively. Pasteurization was also found to be a robust and effective step in inactivating all the viruses tested, since there were no residual viruses detected after the pasteurization process. The log reduction factors achieved by pasteurization were ≥5.73 for HIV, ≥3.86 for BVDV, ≥6.75 for BHV, and ≥5.92 for EMCV. Lyophilization showed significant efficacy for inactivating BVDV, BHV, and EMCV with log reduction factors of 2.69, 1.37, and 4.70, respectively. These results indicate that the production process for urokinase exhibited a sufficient viral reducing capacity to achieve a high margin of virus safety.  相似文献   

15.
Garoussi MT  Mehrzad J 《Theriogenology》2011,75(6):1067-1075
Bovine viral diarrhoea virus (BVDV), a member of the Pestivirus genus, is one of the most important pathogens of dairy cattle; it can cause several clinical syndromes, ranging from subclinical to severe disease. The objectives of the current studies were to assess the effects of two biotypes of BVDV on sperm attachment to the zona pellucida (ZP) of oocytes and on fertilization rate in bovine in vitro fertilization (IVF). In two experiments, sperm at two concentrations (105 and 106/mL) and oocytes were incubated with 106 TCID50/mL cythopatic (CP) or noncythopatic (NCP) BVDV. In the first experiment, with the lower sperm concentration (105/mL), male and female gametes were infected with CP or NCP BVDV, whereas in the second experiment, the sperm concentration was 106/mL, and sperm and oocytes were also infected with CP or NCP BVDV. The number of sperm attached to the ZP and the fertilization rate were evaluated with fluorescence microscopy on the ZP of fertile and infertile oocytes. In the first experiment, compared to the control group (n = 97), oocytes infected with CP BVDV and incubated at the lower (105/mL) sperm concentration positively affected sperm attachment (n = 123) to the ZP of fertile oocytes (P < 0.05). In comparison with the control group (n = 115), sperm infected with CP BVDV negatively affected sperm binding (n = 93) to the ZP of infertile oocytes (P < 0.05). In the second experiment (106 sperm/mL), for both fertile and infertile oocyte groups, sperm attachment in the control group was very high and deemed uncountable. However, in treated groups, the number of sperm attached to the ZP was countable. Only sperm infected with CP BVDV negatively affected sperm binding capacity (n = 81) to the ZP of fertile oocytes (P < 0.05). Although CP and NCP BVDV significantly reduced the fertilization rate of oocytes incubated with a higher sperm concentration, with the lower sperm concentration, only NCP BVDV significantly diminished fertilization rate with contaminated sperm and oocytes (P < 0.05). In conclusion, this study supported the detrimental impacts of sperm or ooctyes infected with CP or NCP BVDV on sperm attachment to the ZP of bovine oocytes and on fertilization rate during bovine IVF.  相似文献   

16.
The purpose of this study was to evaluate the efficacy and mechanisms of the solvent/detergent (S/D) treatment, DEAE-toyopearl 650M anion-exchange column chromatography, heparin-sepharose 6FF affinity column chromatography, and Viresolve NFP filtration steps employed in the manufacture of high-purity antihemophilic factor IX (Green-Nine VF) from human plasma, with regard to removal and/or inactivation of blood-borne viruses. A variety of experimental model viruses for human pathogenic viruses, including human immunodeficiency virus (HIV), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), murine encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV), were all selected for this study. Samples from relevant stages of the production process were spiked with each virus and subjected to scale-down processes mimicking the manufacture of high-purity factor IX. Samples were collected at each step, immediately titrated using a 50% tissue culture infectious dose (TCID50), and virus reduction factors were evaluated. S/D treatment using the organic solvent, tri (n-butyl) phosphate (TNBP), and the detergent, Tween 80, was a robust and effective step in inactivation of enveloped viruses. Titers of HIV, BHV, and BVDV were reduced from the initial titer of 6.06, 7.72, and 6.92 log10 TCID50, respectively, reaching undetectable levels within 1 min of S/D treatment. DEAE-toyopearl 650M anion-exchange column chromatography was found to be a moderately effective step in the removal of HAV, EMCV, and PPV with log reduction factors of 1.12, 2.67, and 1.38, respectively. Heparin-sepharose 6FF affinity column chromatography was also moderately effective for partitioning BHV, BVDV, HAV, EMCV, and PPV with log reduction factors of 1.55, 1.35, 1.08, 1.19, and 1.61, respectively. The Viresolve NFP filtration step was a robust and effective step in removing all viruses tested, since HIV, BHV, BVDV, HAV, EMCV, and PPV were completely removed during the filtration step with log reduction factors of ≥ 5.51, ≥ 5.76, ≥ 5.18, ≥ 5.34, ≥ 6.13, and ≥ 4.28, respectively. Cumulative log reduction factors of HIV, BHV, BVDV, HAV, EMCV, and PPV were ≥ 10.52, ≥ 12.07, ≥ 10.49, ≥ 7.54, ≥ 9.99, and ≥ 7.24, respectively. These results indicate that the production process for GreenNine VF has a sufficient virus reduction capacity for achievement of a high margin of virus safety.  相似文献   

17.
18.
SURFACEN® is a biological product produced from pig lungs. Since these animals can be potential sources of microbial pathogens such as viruses, the manufacturing process of this product should guarantee safety from health hazards. The SURFACEN® production procedure is capable of effective viral clearance (inactivation/removal) by involving two stages of organic solvent extraction followed by acetone precipitation and heat treatment. In this study, we evaluated the clearance capacity of these four stages for a wide range of viruses by performing spiking experiments. Residual contamination was assessed using a Tissue Culture Infectious Dose assay (log10 TCID50). The validation study demonstrated that, for all viruses tested, the TCID50 titers were reduced by more than 2 log10 in each stage. Total log reduction values achieved were between ≥17.82 log10 and ≥27.93 log10, depending on the virus physical properties, titer, and the number of processing stages applied. Results indicated that the production procedure of SURFACEN® can inactivate or remove contaminant viruses from the raw material.  相似文献   

19.
Summary A clone of the wild type (wt) Anticarsia gemmatalis multiple nuclear polyhedrosis virus AgMNPV, derived from a geographical isolate (Hondrina, Brazil) and designated AgMNPV-CL4-3A1, was used to determine the host range of this virus in six established lepidopteran cell lines: Anticarsia gemmatalis (BCIRL-AG-AM1), Helicoverpa zea (BCIRL-HZ-AM1), Heliothis virescens (BCIRL-HV-AM1), Helicoverpa armigera (BCIRL-HA-AM1), Trichoplusia ni (TN-CL1), Bombyx mori (BMN), and a coleopteran cell line Anthonomus grandis (BRL-AG-1). In addition, the in vivo host range of this clone was also assayed in larvae of Helicoverpa zea, Heliothis virescens, Trichoplusia ni, and the homologous species Anticarsia gemmatalis by probit analysis. On the basis of temporal studies of TCID50 values, BCIRL-HV-AM1 cells gave the highest extracellular virus (ECV) titer (9.7×106 TCID50/ml) followed by BCIRL-HA-AM1 cells (8.3×105 TCID50/ml) and BCIRL-AG-AM1 cells (3.2×105 TCID50/ml). In addition, a low ECV titer of 1.37×103 TCID50/ml was detected from TN-CL1 cells 96 h postinoculation, while BRL-AG-1, BMN, and BCIRL-HZ-AM1 cells were nonpermissive to AgMNPV-CL4-3A1 on the basis of TCID50 results. AgMNPV-CL4-3A1 and the wild type AgMNPV had similar restriction profiles that were different from wild type AcMNPV. The LC50 values were 96.9, 564.6, 733.3, and 1.1×104 occlusion bodies/cm2 of diet for A. gemmatalis, Helicoverpa zea, Heliothis virescens, and T. ni, respectively. This article presents the results of research only. Mention of proprietary products in this article does not indicate endorsement or a recommendation for use by USDA-ARS. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status or handicap.  相似文献   

20.
Lei  Chengfeng  Yang  Jian  Hu  Jia  Sun  Xiulian 《中国病毒学》2021,36(1):141-144
正Dear Editor The most important property of a virus is its infectivity. To measure infectivity, one can assay viral replication in cells to obtain a titer for a given virus stock. A titer is defined as a given number of infectious viral units per unit volume,and an infectious unit is the smallest amount of virus that produces recognizable effects [e.g., cytopathic effect(CPE), dot blot immunoreactivity]. The median tissue culture infectious dose (TCID_(50)) is defined as the dilution of a virus required to infect 50%of a given cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号