首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The discriminator nucleotide (position 73) in tRNA has long been thought to play a role in tRNA identity as it is the only variable single-stranded nucleotide that is found near the site of aminoacylation. For this reason, a complete mutagenic analysis of the discriminator in three Escherichia coli amber suppressor tRNA backgrounds was undertaken; supE and supE-G1C72 glutamine tRNAs, gluA glutamate tRNA and supF tyrosine tRNA. The effect of mutation of the discriminator base on the identity of these tRNAs in vivo was assayed by N-terminal protein sequencing of E. coli dihydrofolate reductase, which is the product of suppression by the mutated amber suppressors, and confirmed by amino acid specific suppression experiments. In addition, suppressor efficiency assays were used to estimate the efficiency of aminoacylation in vivo. Our results indicate that the supE glutamine tRNA context can tolerate multiple mutations (including mutation of the discriminator and first base-pair) and still remain predominantly glutamine-accepting. Discriminator mutants of gluA glutamate tRNA exhibit increased and altered specificity probably due to the reduced ability of other synthetases to compete with glutamyl-tRNA synthetase. In the course of these experiments, a glutamate-specific mutant amber suppressor, gluA-A73, was created. Finally, in the case of supF tyrosine tRNA, the discriminator is an important identity element with partial to complete loss of tyrosine specificity resulting from mutation at this position. It is clear from these experiments that it may not be possible to assign a specific role in tRNA identity to the discriminator. The identity of a tRNA in vivo is determined by competition among aminoacyl-tRNA synthetases, which is in turn modulated by the nucleotide substitution as well as the tRNA context.  相似文献   

2.
3.
4.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

5.
6.
P Y Shi  N Maizels    A M Weiner 《The EMBO journal》1998,17(11):3197-3206
The CCA-adding enzyme repairs the 3''-terminal CCA sequence of all tRNAs. To determine how the enzyme recognizes tRNA, we probed critical contacts between tRNA substrates and the archaeal Sulfolobus shibatae class I and the eubacterial Escherichia coli class II CCA-adding enzymes. Both CTP addition to tRNA-C and ATP addition to tRNA-CC were dramatically inhibited by alkylation of the same tRNA phosphates in the acceptor stem and TPsiC stem-loop. Both enzymes also protected the same tRNA phosphates in tRNA-C and tRNA-CC. Thus the tRNA substrate must remain fixed on the enzyme surface during CA addition. Indeed, tRNA-C cross-linked to the S. shibatae enzyme remains fully active for addition of CTP and ATP. We propose that the growing 3''-terminus of the tRNA progressively refolds to allow the solitary active site to reuse a single CTP binding site. The ATP binding site would then be created collaboratively by the refolded CC terminus and the enzyme, and nucleotide addition would cease when the nucleotide binding pocket is full. The template for CCA addition would be a dynamic ribonucleoprotein structure.  相似文献   

7.
8.
Repair of tRNAs in metazoan mitochondria   总被引:3,自引:1,他引:2  
  相似文献   

9.
10.
11.
CCA-adding enzymes (tRNA nucleotidyltransferases) are responsible for the maturation or repair of the functional 3' end of tRNAs. These enzymes are remarkable because they polymerize the essential nucleotides CCA onto the 3' terminus of tRNA precursors without using a nucleic acid template. Recent crystal structures, plus three decades of enzymology, have revealed the elegant mechanisms by which CCA-adding enzymes achieve their substrate specificity in a nucleic acid template independent fashion. The class I CCA-adding enzyme employs both an arginine sidechain and backbone phosphates of the bound tRNA to recognize incoming nucleotides. It switches from C to A addition through changes in the size and shape of the nucleotide-binding pocket, which is progressively altered by the elongating 3' terminus of the tRNA. By contrast, the class II CCA-adding enzyme uses only amino acid sidechains, which form a protein template for incoming nucleotide selection.  相似文献   

12.
Seth M  Thurlow DL  Hou YM 《Biochemistry》2002,41(14):4521-4532
The CCA-adding enzymes [ATP(CTP):tRNA nucleotidyl transferases], which catalyze synthesis of the conserved CCA sequence to the tRNA 3' end, are divided into two classes. Recent studies show that the class II Escherichia coli CCA-adding enzyme synthesizes poly(C) when incubated with CTP alone, but switches to synthesize CCA when incubated with both CTP and ATP. Because the poly(C) activity can shed important light on the mechanism of the untemplated synthesis of CCA, it is important to determine if this activity is also present in the class I CCA enzymes, which differ from the class II enzymes by significant sequence divergence. We show here that two members of the class I family, the archaeal Sulfolobus shibatae and Methanococcus jannaschii CCA-adding enzymes, are also capable of poly(C) synthesis. These two class I enzymes catalyze poly(C) synthesis and display a response of kinetic parameters to the presence of ATP similar to that of the class II E. coli enzyme. Thus, despite extensive sequence diversification, members of both classes employ common strategies of nucleotide addition, suggesting conservation of a mechanism in the development of specificity for CCA. For the E. coli enzyme, discrimination of poly(C) from CCA synthesis in the intact tRNA and in the acceptor-TPsiC domain is achieved by the same kinetic strategy, and a mutation that preferentially affects addition of A76 but not poly(C) has been identified. Additionally, we show that enzymes of both classes exhibit a processing activity that removes nucleotides in the 3' to 5' direction to as far as position 74.  相似文献   

13.
14.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.  相似文献   

16.
17.
Hawko SA  Francklyn CS 《Biochemistry》2001,40(7):1930-1936
Transfer RNA (tRNA) identity determinants help preserve the specificity of aminoacylation in vivo, and prevent cross-species interactions. Here, we investigate covariation between the discriminator base (N73) element in histidine tRNAs and residues in the histidyl-tRNA synthetase (HisRS) motif 2 loop. A model of the Escherichia coli HisRS--tRNA(His) complex predicts an interaction between the prokaryotic conserved glutamine 118 of the motif 2 loop and cytosine 73. The substitution of Gln 118 in motif 2 with glutamate decreased discrimination between cytosine and uracil some 50-fold, but left overall rates of adenylation and aminoacylation unaffected. By contrast, substitutions at neighboring Glu 115 and Arg 121 affected both adenylation and aminoacylation, consistent with their predicted involvement in both half-reactions. Additional evidence for the involvement of the motif 2 loop was provided by functional analysis of a hybrid Saccharomyces cerevisiae-- E. coli HisRS possessing the 11 amino acid motif 2 loop of the yeast enzyme. Despite an overall decreased activity of nearly 1000-fold relative to the E. coli enzyme, the chimera nevertheless exhibited a modest preference for the yeast tRNA(His) over the E. coli tRNA, and preferred wild-type yeast tRNA(His) to a variant with C at the discriminator position. These experiments suggest that part of, but not all of, the specificity is provided by the motif 2 loop. The close interaction between enzyme loop and RNA sequence elements suggested by these experiments reflects a covariation between enzyme and tRNA that may have acted to preserve aminoacylation fidelity over evolutionary time.  相似文献   

18.
J P Shi  C Francklyn  K Hill  P Schimmel 《Biochemistry》1990,29(15):3621-3626
We showed earlier that a single G3.U70 base pair within the amino acid acceptor helix is a major determinant of the identity of tRNA(Ala). In addition, we demonstrated that an RNA hairpin minihelix that recreates the 12 base pair acceptor-T psi C stem of tRNA(Ala) is also aminoacylated in a G3.U70-dependent manner. Determinants for efficient aminoacylation at pH 7.5 have been further investigated with minihelix substrates that have sequence variations at 3.70 and other locations. Although a U,U mismatch and other 3.70 nucleotide alternatives to G.U were recently proposed by others as also important for alanine acceptance, neither that mismatch nor any of four other 3.70 nucleotide combinations confer aminoacylation in vitro with alanine, even with substrate levels of enzyme. In contrast, permutations of the so-called discriminator nucleotide N73 (at position 73) strongly modulate, but do not block, aminoacylation of those substrates that encode G3.U70. In particular, the efficiency of G3.U70-dependent aminoacylation with alanine is strongly enhanced by having the wild-type A73. The effect of N73 alone can explain most of the difference in aminoacylation efficiency of a G3.U70-containing tRNA and a minihelix substrate whose sequences vary significantly from their tRNA(Ala) counterparts. Comparison with earlier work suggests that the substantial modulating effect of N73 is partly or completely obscured when N73 tRNA variants are expressed as amber suppressors in vivo.  相似文献   

19.
20.
The CCA-adding enzyme builds and repairs the 3' terminus of tRNA. Approximately 65% of mature human U2 small nuclear RNA (snRNA) ends in 3'-terminal CCA, as do all mature tRNAs; the other 35% ends in 3' CC or possibly 3' C. The 3'-terminal A of U2 snRNA cannot be encoded because the 3' end of the U2 snRNA coding region is CC/CC, where the slash indicates the last encoded nucleotide. The first detectable U2 snRNA precursor contains 10-16 extra 3' nucleotides that are removed by one or more 3' exonucleases. Thus, if 3' exonuclease activity removes the encoded 3' CC during U2 snRNA maturation, as appears to be the case in vitro, the cell may need to build or rebuild the 3'-terminal A, CA, or CCA of U2 snRNA. We asked whether homologous and heterologous class I and class II CCA-adding enzymes could add 3'-terminal A, CA, or CCA to human U2 snRNA lacking 3'-terminal A, CA, or CCA. The naked U2 snRNAs were good substrates for the human CCA-adding enzyme but were inactive with the Escherichia coli enzyme; activity was also observed on native U2 snRNPs. We suggest that the 3' stem/loop of U2 snRNA resembles a tRNA minihelix, the smallest efficient substrate for class I and II CCA-adding enzymes, and that CCA addition to U2 snRNA may take place in vivo after snRNP assembly has begun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号