首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

2.
The CCA-adding enzyme builds and repairs the 3' terminus of tRNA. Approximately 65% of mature human U2 small nuclear RNA (snRNA) ends in 3'-terminal CCA, as do all mature tRNAs; the other 35% ends in 3' CC or possibly 3' C. The 3'-terminal A of U2 snRNA cannot be encoded because the 3' end of the U2 snRNA coding region is CC/CC, where the slash indicates the last encoded nucleotide. The first detectable U2 snRNA precursor contains 10-16 extra 3' nucleotides that are removed by one or more 3' exonucleases. Thus, if 3' exonuclease activity removes the encoded 3' CC during U2 snRNA maturation, as appears to be the case in vitro, the cell may need to build or rebuild the 3'-terminal A, CA, or CCA of U2 snRNA. We asked whether homologous and heterologous class I and class II CCA-adding enzymes could add 3'-terminal A, CA, or CCA to human U2 snRNA lacking 3'-terminal A, CA, or CCA. The naked U2 snRNAs were good substrates for the human CCA-adding enzyme but were inactive with the Escherichia coli enzyme; activity was also observed on native U2 snRNPs. We suggest that the 3' stem/loop of U2 snRNA resembles a tRNA minihelix, the smallest efficient substrate for class I and II CCA-adding enzymes, and that CCA addition to U2 snRNA may take place in vivo after snRNP assembly has begun.  相似文献   

3.
4.
Seth M  Thurlow DL  Hou YM 《Biochemistry》2002,41(14):4521-4532
The CCA-adding enzymes [ATP(CTP):tRNA nucleotidyl transferases], which catalyze synthesis of the conserved CCA sequence to the tRNA 3' end, are divided into two classes. Recent studies show that the class II Escherichia coli CCA-adding enzyme synthesizes poly(C) when incubated with CTP alone, but switches to synthesize CCA when incubated with both CTP and ATP. Because the poly(C) activity can shed important light on the mechanism of the untemplated synthesis of CCA, it is important to determine if this activity is also present in the class I CCA enzymes, which differ from the class II enzymes by significant sequence divergence. We show here that two members of the class I family, the archaeal Sulfolobus shibatae and Methanococcus jannaschii CCA-adding enzymes, are also capable of poly(C) synthesis. These two class I enzymes catalyze poly(C) synthesis and display a response of kinetic parameters to the presence of ATP similar to that of the class II E. coli enzyme. Thus, despite extensive sequence diversification, members of both classes employ common strategies of nucleotide addition, suggesting conservation of a mechanism in the development of specificity for CCA. For the E. coli enzyme, discrimination of poly(C) from CCA synthesis in the intact tRNA and in the acceptor-TPsiC domain is achieved by the same kinetic strategy, and a mutation that preferentially affects addition of A76 but not poly(C) has been identified. Additionally, we show that enzymes of both classes exhibit a processing activity that removes nucleotides in the 3' to 5' direction to as far as position 74.  相似文献   

5.
CCA-adding enzymes (tRNA nucleotidyltransferases) are responsible for the maturation or repair of the functional 3' end of tRNAs. These enzymes are remarkable because they polymerize the essential nucleotides CCA onto the 3' terminus of tRNA precursors without using a nucleic acid template. Recent crystal structures, plus three decades of enzymology, have revealed the elegant mechanisms by which CCA-adding enzymes achieve their substrate specificity in a nucleic acid template independent fashion. The class I CCA-adding enzyme employs both an arginine sidechain and backbone phosphates of the bound tRNA to recognize incoming nucleotides. It switches from C to A addition through changes in the size and shape of the nucleotide-binding pocket, which is progressively altered by the elongating 3' terminus of the tRNA. By contrast, the class II CCA-adding enzyme uses only amino acid sidechains, which form a protein template for incoming nucleotide selection.  相似文献   

6.
CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.  相似文献   

7.
8.
We describe the purification, cloning, and characterization of the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyl transferase] from the thermophilic archaebacterium, Sulfolobus shibatae. Characterization of an archaeal CCA-adding enzyme provides formal proof that the CCA-adding activity is present in all three contemporary kingdoms. Antibodies raised against recombinant, expressed Sulfolobus CCA-adding enzyme reacted specifically with the 48-kDa protein and fully depleted all CCA-adding activity from S. shibatae crude extract. Thus, the cloned cca gene encodes the only CCA-adding activity in S. shibatae. Remarkably, the archaeal CCA-adding enzyme exhibits no strong homology to either the eubacterial or eukaryotic CCA-adding enzymes. Nonetheless, it does possess the active site signature G[SG][LIVMFY]xR[GQ]x5,6D[LIVM][CLIVMFY]3-5 of the nucleotidyltransferase superfamily identified by Holm and Sander (1995, Trends Biochem Sci 20:345-347) and sequence comparisons show that all known CCA-adding enzymes and poly(A) polymerases are contained within this superfamily. Moreover, we propose that the superfamily can now be divided into two (and possibly three) subfamilies: class I, which contains the archaeal CCA-adding enzyme, eukaryotic poly(A) polymerases, and DNA polymerase beta; class II, which contains eubacterial and eukaryotic CCA-adding enzymes, and eubacterial poly(A) polymerases; and possibly a third class containing eubacterial polynucleotide phosphorylases. One implication of these data is that there may have been intraconversion of CCA-adding and poly(A) polymerase activities early in evolution.  相似文献   

9.
10.
Unusual synthesis by the Escherichia coli CCA-adding enzyme   总被引:2,自引:0,他引:2       下载免费PDF全文
Hou YM 《RNA (New York, N.Y.)》2000,6(7):1031-1043
The tRNA 3' end contains the conserved CCA sequence at the 74-76 positions. The CCA sequence is synthesized and maintained by the CCA-adding enzymes. The specificity of the Escherichia coli enzyme at each of the 74-76 positions was investigated using synthetic minihelix substrates that contain permuted 3' ends. Results here indicate that the enzyme has the ability to synthesize unusual 3' ends. When incubated with CTP alone, the enzyme catalyzed the addition of C74, C75, C76, and multiple Cs. Although the addition of C74 and C75 was as expected, that of C76 and multiple Cs was not. In particular, the addition of C76 generated CCC, which would have conflicted with the biological role of the enzyme. However, the presence of ATP prevented the synthesis of CCC and completely switched the specificity to CCA. The presence of ATP also had an inhibitory effect on the synthesis of multiple Cs. Thus, the E. coli CCA enzyme can be a poly(C) polymerase but its synthesis of poly(C) is regulated by the presence of ATP. These features led to a model of CCA synthesis that is independent of a nucleic acid template. The synthesis of poly(C) by the CCA-adding enzyme is reminiscent of that of poly(A) by poly(A) polymerase and it provides a functional rationale for the close sequence relationship between these two enzymes in the family of nucleotidyltransferases.  相似文献   

11.
Predicted single-stranded structure at the 3' splice site is a conserved feature among intervening sequences (IVSs) in eukaryotic nuclear tRNA precursors. The role of 3' splice site structure in splicing was examined through hexanucleotide insertions at a central intron position in the Saccharomyces cerevisiae tRNA gene. These insertions were designed to alter the structure at the splice site without changing its sequence. Endonuclease cleavage of pre-tRNA substrates was then measured in vitro, and suppressor activity was examined in vivo. A precursor with fully double-stranded structure at the 3' splice site was not cleaved by endonuclease. The introduction of one unpaired nucleotide at the 3' splice site was sufficient to restore cleavage, although at a reduced rate. We have also observed that guanosine at the antepenultimate position provides a second consensus feature among IVSs in tRNA precursors. Point mutations at this position were found to affect splicing although there was no specific requirement for guanosine. These and previous results suggest that elements of secondary and/or tertiary structure at the 3' end of IVSs are primary determinants in pre-tRNA splice site utilization whereas specific sequence requirements are limited.  相似文献   

12.
13.
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] catalyzes the addition and regeneration of the 3'-terminal CCA sequence of tRNAs. We show that the CCA-adding enzyme will specifically add a CCA terminus to synthetic full-length tDNA and to DNA oligonucleotides corresponding to the "top half" of tRNA-the acceptor stem and TpsiC stem-loop of tRNA. CCA addition to the top half tDNA minihelices requires a 2' as well as a 3' OH at the 3' terminus of the tDNA. Addition also depends on the length of the base paired stem, and is facilitated by, but is not dependent upon, the presence of a TpsiC loop. These results provide further evidence for independent functions of the top and bottom halves of tRNA, and support the hypothesis that these two structurally distinct and functionally independent domains evolved independently.  相似文献   

14.
Weiner AM 《Current biology : CB》2004,14(20):R883-R885
The CCA-adding enzyme, which builds and repairs the 3' terminal CCA sequence of tRNA, is the only RNA polymerase that can synthesize a defined nucleotide sequence without using a nucleic acid template. New cocrystal structures tell us how this remarkable enzyme works.  相似文献   

15.
16.
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.  相似文献   

17.
The Rho guanine nucleotide exchange factor protoDbl is involved in different biochemical pathways affecting cell proliferation and migration. The N-terminal sequence of protoDbl contains negative regulatory elements that restrict the catalytic activity of the DH-PH module. Here, we report the identification of a new mouse protoDbl splice variant lacking exon 3. We found that the splice variant mRNA is expressed in the spleen and bone marrow lymphocytes, adrenal gland, gonads and brain. The protoDbl variant protein was detectable in the brain. The newly identified variant displays the disruption of the SEC14 domain, positioned on exons 2 and 3 in the protoDbl N-terminal region. We show here that an altered SEC14 sequence leads to enhanced Dbl translocation to the plasma membrane and to augmented transforming and exchange activity.  相似文献   

18.
RNA 3'-terminal phosphate cyclase catalyses the ATP-dependent conversion of the 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The physiological function of the cyclase is not known, but the enzyme could be involved in the maintenance of cyclic ends in tRNA splicing intermediates or in the cyclization of the 3' end of U6 snRNA. In this work, we describe cloning of the human cyclase cDNA. The purified bacterially overexpressed protein underwent adenylylation in the presence of [alpha-32P]ATP and catalysed cyclization of the 3'-terminal phosphate in different RNA substrates, consistent with previous findings. Comparison of oligoribonucleotides and oligodeoxyribonucleotides of identical sequence demonstrated that the latter are approximately 500-fold poorer substrates for the enzyme. In Northern analysis, the cyclase was expressed in all analysed mammalian tissues and cell lines. Indirect immunofluorescence, performed with different transfected mammalian cell lines, showed that this protein is nuclear, with a diffuse nucleoplasmic localization. The sequence of the human cyclase has no apparent motifs in common with any proteins of known function. However, inspection of the databases identified proteins showing strong similarity to the enzyme, originating from as evolutionarily distant organisms as yeast, plants, the bacterium Escherichia coli and the archaeon Methanococcus jannaschii. The overexpressed E. coli protein has cyclase activity similar to that of the human enzyme. The conservation of the RNA 3'-terminal phosphate cyclase among Eucarya, Bacteria and Archaea argues that the enzyme performs an important function in RNA metabolism.  相似文献   

19.
20.

Background  

The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A) polymerase I (PAP). As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme). Therefore, it was assumed that Hfq might not only influence the poly(A) polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号